首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)2f(x),证明存在x0∈(2π,[*])使得F"(x。)=0.
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)2f(x),证明存在x0∈(2π,[*])使得F"(x。)=0.
admin
2018-06-14
41
问题
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)
2
f(x),证明存在x
0
∈(2π,[*])使得F"(x。)=0.
选项
答案
显然F(0)=F([*])=o,于是由罗尔定理知,存在x
1
∈(0,[*]),使得F’(x
1
)=0.又 F’(x)=2(sinx一1)f(x)+(sinx—1)2f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在x
0
*
∈(x
1
,[*]),使得F"(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F"(x)均为以2π为周期的周期函数,于是存在x
0
=2π+x
0
*
,即x
0
∈(2π,[*]),使得 F"(x
0
)=F"(x
0
*
)=0.
解析
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明存在x
0
*
∈[0,
),使得F"(x
0
*
)=0即可.
转载请注明原文地址:https://kaotiyun.com/show/36W4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是总体N(μ,σ2)的样本,是样本均值,记则服从自由度为n-1的t分布的随机变量是()
设a,b,a+b均非0,则行列式=_________.
设随机变量X的概率密度为求y=sinX的概率密度.
设随机变量X的概率密度为求Y=ex的概率密度fY(y).
设P(B)>0,A1,A2互不相容,则下列各式中不一定正确的是()
设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x).
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设连续型随机变量X的分布函数为其中a>0,Ф(x),φ(x)分别是标准正态分布的分布函数与概率密度,令,求Y的密度函数.
求由直线x=1,x=3与曲线y=xlnx及过该曲线上一点处的切线围成的平面图形的最小面积.
(Ⅰ)设X与Y相互独立,且X-N(5,15),Y-χ2(5),求概率P{X-5>(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<X<3.5)∩(6.3<S2<9.6)}.
随机试题
衣原体
科学技术环境对国际市场营销的影响。
患者,女,13岁,凸面型,鼻唇角正常,面下1/3稍短,颏唇沟深。前牙Ⅲ度深覆,覆盖5mm,磨牙远中尖对尖关系,上颌拥挤6mm,下颌拥挤6.5mm。若该患者资料显示不允许上下前牙唇倾,治疗计划可能为
获得劳务分包资质的企业,可以承接施工总承包企业或者专业承包企业分包的劳务作业。劳务分包企业不包括()。
杭州一家大型工程装卸公司为提高竞争优势,从新加坡订购进口成套装卸设备。该设备投入使用后,接连发生非正常技术性故障,经合法检验机构检验,确认为该设备中部分关键件品质不良。境内外交易双方协商决定,对该套设备作削价30%的处理,并由境外供货商免费补偿进口部分关键
因素比较法的优点是()。
论述终身教育思潮的发展历程、核心观点及意义。
网络看起来是“连接”的,但从网络连接的原理看,又可以是“非连接的”。Internet中不是面向连接应用程序的有
局域网硬件中主要包括工作站、网络适配器、传输介质和()。
There’sbeenalotoftalk【C1】______aboutwhoshouldgotocollegeandwhoshouldnot.Andthe【C2】______thathaveguidedthista
最新回复
(
0
)