设A,B都是n阶矩阵,并且A是可逆矩阵.证明:矩阵方程AX=B和XA=B的解相同AB=BA.

admin2018-11-23  42

问题 设A,B都是n阶矩阵,并且A是可逆矩阵.证明:矩阵方程AX=B和XA=B的解相同AB=BA.

选项

答案AX=B的解为A-1B,XA=B的解为BA-1. AX=B和XA=B的解相同即A-1B=BA-1.作恒等变形: A-1B=BA-1[*]B=ABA-1[*]BA=AB.

解析
转载请注明原文地址:https://kaotiyun.com/show/39M4777K
0

相关试题推荐
随机试题
最新回复(0)