首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
admin
2018-07-30
74
问题
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A
3
=O,则
选项
A、E-A不可逆,E+A不可逆.
B、E-1不可逆,E+A可逆.
C、E-A可逆,E+A可逆.
D、E-A可逆,E+A不可逆.
答案
C
解析
由于(E-A)(E+A+A
2
)=E-A
2
=E,(E+A)(E-A+A
2
)=E+A
3
=E,故由可逆矩阵的定义知:E-A和E+A均是可逆的.
转载请注明原文地址:https://kaotiyun.com/show/39j4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上存在一阶导数,且|f’(x)|≤M,证明:当x∈[a,b]时,
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设z=f(x,y)由方程z-y-x+xez-y-x=0确定,求dz.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设A,B皆为n阶矩阵,则下列结论正确的是().
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A一3E|的值.
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
设fn(x)=1一(1一cosx)n,求证:(1)任意正整数n,fn(x)=中仅有一根;(2)设有
随机试题
德国基础学校的记分分为()
影响护理教育发展趋势的因素有哪些?
销售与收款业务内部会计控制制度的设计包括
对于个人理想信念的性质、内容以及实现有着决定性影响的是【】
接入Internet的计算机都有一个唯一的IP地址,其中类型号和网络号是由_______分配的。
影响外周阻力的主要因素是
营业税的纳税人是在我国境内()的单位和个人,它包括所有内资企业、外商投资企业和个体经营者。
各种凭证不得随意涂改、刮擦、挖补,若填写有误,应用划线更正法予以更正。()
人的发展特征包括()。
Mercifully,IwasabletocompleteallIhadtodowithinafewdays.Theunderlinedpartmeans________.
最新回复
(
0
)