首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2=(2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为________.
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2=(2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为________.
admin
2019-08-11
54
问题
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η
1
,η
2
,η
3
满足η
1
+η
2
=(2,0,-2,4)
T
,η
1
+η
3
=(3,1,0,5)
T
,则Ax=b的通解为________.
选项
答案
k(1,1,2,1)
T
+(1,0,一1,2)
T
,其中k为任意常数.
解析
本题考查线性方程组的解的性质和非齐次线性方程组的通解的结构.因为r(A)=3,所对应的齐次线性方程组Ax=0的解空间的维数为4—3=1,故它的任一非零解都可作为其基础解系.由于η
1
+η
3
一(η
1
+η
2
)=η
3
一η
2
=(1,1,2,1)
T
可作为Ax=0的基础解系.又
(η
1
+η
2
)=(1,0,-1,2)
T
是Ax=b的—个解,所以Ax=b的通解为后(1,1,2,1)
T
+(1,0,-1,2)
T
,其中k为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/3AN4777K
0
考研数学二
相关试题推荐
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=_______.
设连续函数z=f(x,y)满足=______________.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=______.
=_______
(1)求定积分an=∫02x(2x-x2)ndx,n=1,2,…;(2)对于(1)中的an,证明an+1
设g(x)在x=0的某邻域内连续,且,又设f(x)在该邻域内存在二阶导数,且满足x2f″(x)-[fˊ(x)]2=xg(x),则()
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明:方程组(α1+α2+α3+β,α1,α2,α3)x=β有无穷多解,并求其通解.
设区域,其中常数a>b>0.D1是D在第一象限的部分,f(x,y)在D上连续,等式恒成立的充分条件是()[img][/img]
(00年)已知f(x)是周期为5的连续函数.它在x=0某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x)其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线
(06年)设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2.…).(I)证明存在.并求该极限;(Ⅱ)计算
随机试题
霍乱引起的腹泻属于【】
类风湿性关节炎特点不包括
男性,5岁,突发脐周绞痛,阵发性,2周前曾呕吐蛔虫3条,哭闹、停止排气2天。查体:温度36.7℃,一般状况可,腹胀不明显,脐周可触及可变形变位条索状团块,轻度压痛,血WBCA.6×109/L。
根据行为模型表达B=HELP:对人的行为产生作用和影响的基本因素有()。
某企业拟投资一个完整工业项目,预计第一年和第二年相关的流动资产需用额分别为2500万和3500万元,两年相关的流动负债需用额分别为1500万元和2000万元,则第二年新增的流动资金投资额应为()万元。
关于利润中心业绩报告,下列说法不正确的是()。
投资项目资本金是指()。
《卓越绩效评价准则》国家标准的国标编号是()。
数学系的学生也学了不少文科课程,王颖是数学系的学生,所以她也学了不少文科课程。以下哪项论证展示的推理错误与上述论证中的最相似?
设向量组α,β,γ线性无关,向量组α,β,δ线性相关,则()
最新回复
(
0
)