首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2019-05-11
49
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性 a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r( a
1
,a
2
,…,a
n
)=n。对任一n维向量易,因为 a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+l,故 a
1
,a
2
,…,a
n
,b线性相关。 综上所述r( a
1
,a
2
,…,a
n
,b)=n。 又因为 a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由 a
1
,a
2
,…,a
n
线性表示。 充分性 已知任一n维向量b都可由 a
1
,a
2
,…,a
n
线性表示,则单位向量组ε
1
,ε
2
,…,ε
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/3AV4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
证明:方程χa=lnχ(a<0)在(0,+∞)内有且仅有一个根.
设f(χ)二阶连续可导,且=0,f〞(0)=4,则=_______.
设A=,求A的特征值,并证明A不可以对角化.
设f(x)连续,且f(1)=0,f’(1)=2,求极限
求初值问题的解。
设有方程y’+P(x)y=x2,其中试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设f(x)在[a,b]可积,求证:Ф(x)=在[a,b]上连续,其中x0∈[a,b].
随机试题
恶性高血压可发生问叶组织肿瘤可发生
可用于治疗青光眼的药物除外
对氨苄西林的下列叙述,错误的是
下列风险识别中,风险识别结果较粗的是()
下列各项中,属于固定预算法特点的有()。
①经过一系列鉴定,它被确认为是一个全新的物种——西藏披毛犀,距今370万年,是已知最早和最原始的披毛犀②随着冰期在280万年前开始显现,西藏披毛犀开始离开高原地带,最后来到欧亚大陆形成了泥河湾披毛犀、托洛戈伊披毛犀及晚更新世的最后披毛犀③经过一
[*]
每个进程在得到处理机运行前,必须首先进行下列哪一种操作?()
Georgehadstolensomemoney,butthepolicehadcaughthimandhehadbeenputinprison.Nowhistrialwasabouttobegin,and
WilliamShakespearedescribedoldageas"secondchildishness"—sansteeth,sanseyes,sanstaste.Inthecaseoftastehemigh
最新回复
(
0
)