首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2019-05-11
100
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性 a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r( a
1
,a
2
,…,a
n
)=n。对任一n维向量易,因为 a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+l,故 a
1
,a
2
,…,a
n
,b线性相关。 综上所述r( a
1
,a
2
,…,a
n
,b)=n。 又因为 a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由 a
1
,a
2
,…,a
n
线性表示。 充分性 已知任一n维向量b都可由 a
1
,a
2
,…,a
n
线性表示,则单位向量组ε
1
,ε
2
,…,ε
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/3AV4777K
0
考研数学二
相关试题推荐
设f(χ)在(-∞,+∞)有定义,f(χ+y)=f(χ)+f(y)+2χy,f′(0)=a,求f(χ).
y=的斜渐近线为_______.
设f(χ)在χ=a处可导,则等于().
设线性相关,则a=_______.
设函数f(χ)连续,下列变上限积分函数中,必为偶函数的是().
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=.属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
求矩阵A=的特征值与特征向量.
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中厂是可微函数,计算并化成最简形式.
设K,L,δ为正的常数,则=_______.
极限=________.
随机试题
四季を短歌の重要な主題としたのは平安時代だが、江戸時代は季語によって季節を示す手法を重視した。それが組織化されると、いわゆる「歳時記」が作られる。短歌では「春すぎて夏来にけらし…」ということができる。春すぎて秋や冬の来ることはないから、念の入った話だが、そ
型号为WJH一4的探测电缆适用于探测钻井深度大于3000m且电缆拉断力小于或等于4t的场合。
大叶性肺炎肺肉质变的病变特点是
A.维生素B.银杏内酯C.紫杉醇D.青蒿素E.冰片
法人在解散并清偿完毕债务后,剩余的资产应当根据股东的股权进行分配,也就是说剩余资产应返还给股东,从而使这些财产的所有权权能完全复归于股东,这就是()的具体表现。
()是在绩效管理末期,主管与下属就本期的工作表现和工作业绩等方面所进行的全面回顾、总结和评估。
电子现金是一种通过电子方式进行银行署名的数字信息。它同信用卡不一样,信用卡本身并不是货币,而只是一种转账手段,电子现金本身就是一种货币,可以直接用来购物。但它又和金币、纸币不一样,是种没有物理实体的货币,需要通过数据的交换实现现金的功能。符合这段话意思的是
京剧是中国戏曲的代表,被誉为“京剧鼻祖”的是:
在地面上相距2000公里的两地之间通过电缆传输4000比特长的数据包,数据速率为64Kb/s,从开始发送到接收完成需要的时间为(13)。
TheConsumerPriceIndex(CPI)isameasureoftheaveragechangeovertimeinthepricespaidbyurbanconsumersforamarket
最新回复
(
0
)