首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,且A的行列式|A|=0,则A中( ).
设A是n阶矩阵,且A的行列式|A|=0,则A中( ).
admin
2020-06-05
43
问题
设A是n阶矩阵,且A的行列式|A|=0,则A中( ).
选项
A、必有一列元素全为0
B、必有一列向量是其余列向量的线性组合
C、必有两列元素对应成比例
D、任一列向量是其余列向量的线性组合
答案
B
解析
对于方阵A,因为|A|=0
R(A)﹤n
A的行(列)向量组的秩小于n,所以A的列向量组必然线性相关,再由向量组线性相关的充分必要条件可知,其中至少有一个向量可由其余向量线性表示,故(B)入选.
由于选项(A),(C)仅是|A|=0的充分条件而不必要,故均不正确,由向量组线性相关的充分必要条件“至少存在一个向量可用其余向量线性表示”可知,(D)也不正确.
转载请注明原文地址:https://kaotiyun.com/show/3Av4777K
0
考研数学一
相关试题推荐
向量组(Ⅰ)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi,i=1,2,…,s均可由向量组(Ⅰ)α1,α2,…,αs线性表出,则必有()
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率p{|X一μ|
设z=z(x,y)是由方程z-y-z+2xez-y-x=0确定的隐函数,则在点(0,1)处z=z(x,y)的全微分dz|(0,1)=()
设k>0,则函数f(x)=lnx-+k的零点个数为().
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有
设n阶方阵A的秩为r,且r<n,则在A的n个行向量中
向量组α1,α2,α3,α4,α5与向量组α1,α3,α5的秩相等,则这两个向量组()
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
下列命题正确的是().
随机试题
行车中当驾驶人意识到机动车爆胎时,应在控制住方向的情况下采取紧急制动,迫使机动车迅速停住。
下列关于Internet网中主机、IP地址和域名的叙述,错误的是________。
β受体阻滞剂治疗心绞痛的机制包括
下列主要用于表面麻醉的药是
下列何项是青春期开始的重要标志( )
张三、李四、王五、赵六、周七五人为研究生同学,2010年7月份研究生毕业时,五人商议欲创立一家经营法律类图书的英杰有限责任公司。五人订立了设立公司的协议,约定张三以2010年6月份依据遗嘱继承的其祖父所留给他的临街的一处二层商业房作为出资;李四以货币10万
甲企业向乙银行申请贷款,约定还款日期为2020年12月30日。丙企业为该债务提供了保证担保,但未约定保证方式和保证期间。后甲企业申请展期,与乙银行就还款期限作了变更,还款期限延至2021年12月30日,但未征得丙企业的书面同意。展期到期,甲企业无力还款,乙
以下旅游资源是按功能分类的有()
____________。中国人在太空迈出的每一步,都是科技创新的坚实足印。没有创新驱动,就不会有航天工程的突飞猛进;没有创新驱动,就不会有空间技术、空间应用和空间科学的蓬勃发展。尊重科学、追求卓越,这是中国航天精神,更是大众创业、万众创新背景下转型升级的
五代花鸟画家黄筌和徐熙分别创造了不同的绘画风格,人称“黄家富贵,_______。”
最新回复
(
0
)