首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,有三个不同特征值λ1 ,λ2 ,λ3 ,对应的特征向量依次为α1 ,α2 ,α3 ,令β=α1+α2+α3. (1)证明:β不是A的特征向量; (2)β,Aβ,A2β线性无关; (3)若A3β=Aβ,计算行列式|2A+3E|.
设A为三阶矩阵,有三个不同特征值λ1 ,λ2 ,λ3 ,对应的特征向量依次为α1 ,α2 ,α3 ,令β=α1+α2+α3. (1)证明:β不是A的特征向量; (2)β,Aβ,A2β线性无关; (3)若A3β=Aβ,计算行列式|2A+3E|.
admin
2016-12-16
48
问题
设A为三阶矩阵,有三个不同特征值λ
1
,λ
2
,λ
3
,对应的特征向量依次为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明:β不是A的特征向量;
(2)β,Aβ,A
2
β线性无关;
(3)若A
3
β=Aβ,计算行列式|2A+3E|.
选项
答案
(1)可用反证法证之; (2)用线性无关定义证明; (3)因β,Aβ,A
2
β线性无关,用矩阵表示法可求出A的相似矩阵B,由|A|=|B|得|2B+3E|=|2A+3E|. (1)证一假设β为A的特征向量,则存在λ
0
,使Aβ=λ
0
β,即 A(α
1
+α
2
+α
3
)=λ
0
<α
1
+α
2
+α
3
), 得 (λ
1
一λ
0
)α
1
+(λ
2
一λ
0
)α
2
+(λ
3
一Ao)α
3
=0. 由α
1
,α
2
,α
3
线性无关知 λ
1
=λ
0
=0,λ
2
一λ
0
=0,λ
3
一λ
0
=0, 从而有λ
1
=λ
2
=λ
3
,这与已知条件矛盾,因此β不是A的特征向量. 因α
1
,α
2
,α
3
是属于不同特征值的特征向量,故α
1
+α
2
+α
3
必不是A的特征向量. (2)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, 则 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
2
3
)α
3
=0. 由α
1
,α
2
,α
3
线性无关,得 [*] 因上方程组的系数矩阵的行列式为三阶范德蒙行列式,又因λ
1
≠λ
2
≠λ
3
,故该方程组只有零解,故 k
1
=k
2
=k
3
=0. 所以β,Aβ,A
2
β线性无关. (3)由题设有 A[p,A[β,A
2
β]=[Aβ,A
2
β,A
3
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β][*] 令P=令P=[β,Aβ,A
2
β],则P可逆,且 [*] 于是 P
一1
(2A+3E)P=2B+3E, 从而 |2A+3E|=|2B+3E|=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3BH4777K
0
考研数学三
相关试题推荐
对于函数f(x),如果存在一点c,使得f(c)=c,则称c为f(x)的不动点.(1)作出一个定义域与值域均为[0,1]的连续函数的图形,并找出它的不动点;(2)利用介值定理证明:定义域为[0,1],值域包含于[0,1]的连续函数必定有不动点.
过点Po(xo,yo,zo)分别作平行于z轴的直线和平行于xOy面的平面,问在它们上面的点的坐标各有什么特征?
计算曲线积分,其中L是以点(1,0)为中心,半径为R的圆周(k>1)取逆时针方向.
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
随机试题
简述某用户收不到信号的故障分析与维修。
A.沙美特罗B.沙丁胺醇C.噻托溴铵D.孟鲁司特E.布地奈德属于M胆碱受体阻断剂的长效平喘药是
[2012年第125题,2006年第158题]按《建筑制图标准》规定,在同一张图纸上绘制多于一层的平面图时,各层平面图宜按层数由低向高的顺序:
ParticularAverage
成本领先战略、差异化战略与集中化战略如何区别。
F公司是一家快速成长的上市公司,目前因项目扩建急需筹资5000万元。由于当前公司股票价格较低,公司拟通过发行可转换债券的方式筹集资金,并初步拟定了筹资方案。有关资料如下:(1)可转换债券按面值发行,期限10年.,每份可转换债券的面值为1000元,票面利率
(复旦大学2017)假设无风险收益Rf=5%,投资人最优风险资产组合的预期收益E(Rt)=15%,标准差为25%,试求:投资人承担一单位风险所要增加的预期收益率是多少?
以法的创制方式和表现形式为标准,法可以划分为()
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
在设备管理中,为了克服独占设备速度较慢、降低设备资源利用率的缺点,引入了【】,即用共享设备模拟独占设备。
最新回复
(
0
)