首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,有三个不同特征值λ1 ,λ2 ,λ3 ,对应的特征向量依次为α1 ,α2 ,α3 ,令β=α1+α2+α3. (1)证明:β不是A的特征向量; (2)β,Aβ,A2β线性无关; (3)若A3β=Aβ,计算行列式|2A+3E|.
设A为三阶矩阵,有三个不同特征值λ1 ,λ2 ,λ3 ,对应的特征向量依次为α1 ,α2 ,α3 ,令β=α1+α2+α3. (1)证明:β不是A的特征向量; (2)β,Aβ,A2β线性无关; (3)若A3β=Aβ,计算行列式|2A+3E|.
admin
2016-12-16
73
问题
设A为三阶矩阵,有三个不同特征值λ
1
,λ
2
,λ
3
,对应的特征向量依次为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明:β不是A的特征向量;
(2)β,Aβ,A
2
β线性无关;
(3)若A
3
β=Aβ,计算行列式|2A+3E|.
选项
答案
(1)可用反证法证之; (2)用线性无关定义证明; (3)因β,Aβ,A
2
β线性无关,用矩阵表示法可求出A的相似矩阵B,由|A|=|B|得|2B+3E|=|2A+3E|. (1)证一假设β为A的特征向量,则存在λ
0
,使Aβ=λ
0
β,即 A(α
1
+α
2
+α
3
)=λ
0
<α
1
+α
2
+α
3
), 得 (λ
1
一λ
0
)α
1
+(λ
2
一λ
0
)α
2
+(λ
3
一Ao)α
3
=0. 由α
1
,α
2
,α
3
线性无关知 λ
1
=λ
0
=0,λ
2
一λ
0
=0,λ
3
一λ
0
=0, 从而有λ
1
=λ
2
=λ
3
,这与已知条件矛盾,因此β不是A的特征向量. 因α
1
,α
2
,α
3
是属于不同特征值的特征向量,故α
1
+α
2
+α
3
必不是A的特征向量. (2)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, 则 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
2
3
)α
3
=0. 由α
1
,α
2
,α
3
线性无关,得 [*] 因上方程组的系数矩阵的行列式为三阶范德蒙行列式,又因λ
1
≠λ
2
≠λ
3
,故该方程组只有零解,故 k
1
=k
2
=k
3
=0. 所以β,Aβ,A
2
β线性无关. (3)由题设有 A[p,A[β,A
2
β]=[Aβ,A
2
β,A
3
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β][*] 令P=令P=[β,Aβ,A
2
β],则P可逆,且 [*] 于是 P
一1
(2A+3E)P=2B+3E, 从而 |2A+3E|=|2B+3E|=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3BH4777K
0
考研数学三
相关试题推荐
求下列函数的极值:
设l1=(1,1),l2=(-1,1),分别求出函数z=xy在点(0,0)处沿方向l1和方向l2的二阶方向导数.
已知点A(2,1,4)、B(4,3,10),写出以线段AB为直径的球面方程.
求下列函数在指定点Mo处沿指定方向l的方向导数:(1)z=x2+y2,Mo(1,2),l为从点(1,2)到点的方向;(2)z=xexy,Mo(-3,0),l为从点(-3,0)到点(-1,3)的方向;(3)u=xyz,Mo(5,1,2),l=(4,3,
计算,其中L是:(1)抛物线y2=x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)从点(1,1)到点(1,2)再到点(4,2)的折线;(4)曲线x=2t2+t+1,y=t2+1上从点(1,1)到点(4,2
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是__________.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设二维随机变量X和Y的联合概率密度为求X和Y的联合分布F(x,y).
随机试题
Manypeoplewronglybelievethatwhenpeoplereacholdage,theirfamiliesplacetheminnursinghomes.Theyareleftinthe【C1】
A、Herrigoroustrainingindeliveringeloquentspeeches.B、Herlifelongcommitmenttodomesticandglobalissues.C、Hewidesprea
关于睾丸肿瘤的论述,下列哪项是正确的
女,20岁,近1个半月来干咳伴有低热,自觉乏力。听诊右上锁骨下区有固定的湿啰音。怀疑其肺结核。病人在治疗过程中,判断结核化疗效果,最重要的指标是()。
女性,25岁,未婚,妇科检查发现右侧附件区4cm囊性包块,活动佳。血清CA12520U/ml,B,型超声为单房囊性肿中物,此例最可能的诊断是
患者心中烦热,急躁失眠,口舌糜烂疼痛,口渴,舌红,脉数,经诊断为()。
双代号网络计划中,如果计划工期等于计算工期,且工作i-j的结束节点j在关键线路上,则工作i-j的自由时差( )。
知情权是指公民有权知道他应该知道的事情,国家应该最大限度地确认和保障公民知悉、获取信息的权利,尤其是政务信息的权利。根据上述定义,下面与知情权无关的是()。
在考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好三个关联表对象“tStud”“tCourse”和“tScore”,以及表对象“tTemp”。试按以下要求完成设计。创建一个查询,查找5号入校的学生,显示其“学号”“姓名”“性别”
A、Shegetsillatthesametimeeveryyear.B、Shedoesn’tgetenoughexercise.C、Sheoftenhasdifficultysleeping.D、She’ssick
最新回复
(
0
)