首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如果r(A)=3,则方程组Ax=b的通解是_______
四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如果r(A)=3,则方程组Ax=b的通解是_______
admin
2016-05-31
69
问题
四元方程组Ax=b的三个解是α
1
,α
2
,α
3
,其中α
1
=(1,1,1,1)
T
,α
2
+α
3
=(2,3,4,5)
T
,如果r(A)=3,则方程组Ax=b的通解是_______
选项
答案
(1,1,1,1)
T
+k(0,1,2,3)
T
解析
根据(α
2
+α
3
)-2α
1
=(α
2
-α
1
)+(α
3
-α
1
)=(2,3,4,5)
T
-2(1,1,1,1)
T
=(0,1,2,3)
T
,因此可知(0,1,2,3)
T
是Ax=0的解.又因为r(A)=3,n-r(A)=1,所以Ax=b的通解为(1,1,1,1)
T
+k(0,1,2,3)
T
.
转载请注明原文地址:https://kaotiyun.com/show/3GT4777K
0
考研数学三
相关试题推荐
在1948年9月召开的中共中央政治局会议上,毛泽东说,我们“不必搞资产阶级的议会制和三权鼎立等”,这套东西“袁世凯、曹锟都搞过,已经臭了”,我们应当“建立民主集中制的各级人民代表会议制度”。毛泽东这段话要回答的是即将成立的新中国的()。
材料1 位于长江之滨的江苏张家港,是我国犯罪率最低的城市之一。与之紧密相关的是,张家港还是首批获评全国文明城市的县级市。早在20年前,这里就以精神文明建设成就享誉全国。长期的文明浸润,涵养了这座城市的法治文化,孕育了张家港人的法治精神。 材料2
2020年3月26日,美国所谓“2019年台北法案”被签署成法。美方这一行动严重违反一个中国原则和中美三个联合公报规定,严重违背国际法和国际关系基本准则,粗暴干涉中国内政。中方对此表示强烈不满和坚决反对。这表明(社)。
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设A,B是同阶正定矩阵,则下列命题错误的是().
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
设A与B均为n,阶矩阵,且A与B合同,则().
设a,b,c是三角形的三条边的长,A、B、C是三边对应的三个角的度量,试用A,a,b,c表示
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A及(A-3/2E)6,其中E为3阶单位矩阵.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
随机试题
下列不属于价值观影响因素的是()
It’sanannualback-to-schoolroutine.Onemorningyouwavegoodbye,andthat【56】eveningyou’reburningthelate-nightoilins
Shoppingforclothesisnotthe【61】experienceforamanasitisforawoman.Amangoesshoppingbecauseheneedssomething.Hi
与籍贯或所处地域有关的是
舒林酸属于双氯芬酸钠属于
A.易耗气伤津B.易损伤阳气C.易袭阳位D.易袭阴位E.易阻滞气机风邪致病
为了适应中间商转售他人货物的需要,最好采用()。
丙公司基本生产车间领用某种材料4000千克,单价100元,材料成本合计400000元,生产A产品4000件,B产品2000件。A产品消耗定额为12千克,B产品消耗定额为26千克,材料按定额消耗量比例分配,B产品应分担的材料费用为(
甲企业是一家国际化的企业,业务分布于北美区域、东南亚区域以及中东区域。公司在这些区域市场经营的产品大类基本相同。公司决定将权力下放给不同区域负责人。根据以上信息,适合该公司采用的组织结构类型是()。
程序流程图是()。
最新回复
(
0
)