首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
admin
2020-09-25
41
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα=2αz+α,Aα=2α+3α.求:
(1)矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
(2)矩阵A的特征值.
(3)可逆阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由题意知A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 因此B=[*] (2)因为α
1
,α
2
,α
3
线性无关,由(1)得A~B,因此只需求B的特征值.B的特征多项式|λE一B|=[*]=(λ一1)
2
(λ一4),因此B的特征值为1,1,4,所以A的特征值也为1,1,4. (3)我们首先求B的特征向量. ①当λ=1时,解(E-B)x=0,得同解方程为x
1
+x
2
+2x
3
=0,因此对应特征向量为η
1
= (一2,0,1)
T
,η
2
=(一1,1,0)
T
; ②当λ=4时,解(4E—B)x=0,得同解方程为[*]得对应特征向量为η
3
=(0,1,1)
T
. 令P
1
=(η
1
,η
2
,η
3
)=[*],因此有P
1
-1
BP
1
=[*] 再令Q=(α
1
,α
2
,α
3
),由(1)得B=Q
-1
AQ. 因此有P
1
-1
Q
-1
AQP
1
=[*].即(QP
1
)
-1
A(QP
1
)=[*] 令P=QP
1
即得所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Px4777K
0
考研数学三
相关试题推荐
曲线y=lnx上与直线x+y=1垂直的切线方程为__________.
=_____________。
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
(87年)求矩阵A=的实特征值及对应的特征向量.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18—2Q1,p2=12一Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
二元函数f(x,y)在点(x0,y0)处两个偏导数fx’(x0,y0),f(x0,y0)存在是f(x,y)在该点连续的().
[2003年]已知曲线y=x3-3ax2+b与x轴相切,则b2通过a表示为b2=__________.
A是n阶方阵,|A|=3.则|(A*)*|=()
随机试题
注册制中证券监管机构对发行人拟披露信息作()
下列各项应在账户贷方登记的有()
关于控释片说法正确的是
下列各项中,属于国家统一的会计制度的是()。
(2009年考试真题)甲公司2008年1月5日支付价款2000万元购入乙公司30%的股份,准备长期持有,另支付相关税费20万元,购入时乙公司可辨认净资产公允价值为12000万元。甲公司取得投资后对乙公司具有重大影响。假定不考虑其他因素,甲公司因确认投资
具有________认知风格的人在信息加工中对内在参照有较大的依赖倾向,在加工信息时主要依据,内在标准。(日照)
2007年部分国家(地区)国民生产总值2007年部分国家(地区)幸福指数与失业率下列说法与资料相符的有几个?()(1)国民生产总值小于1000亿美元的国家(地区),幸福指数均高于其他国家(地区)(2)人口过亿的国家(地区)失业率越低,幸福
警察携带枪支饮酒可能受到以下哪些处分()。
Space-AgeArcheologyIt’sastrangepartnership,butaveryeffectiveone:Satellitesandspace-shuttle-carriedradararehel
【B1】【B2】
最新回复
(
0
)