首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
admin
2020-09-25
76
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα=2αz+α,Aα=2α+3α.求:
(1)矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
(2)矩阵A的特征值.
(3)可逆阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由题意知A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 因此B=[*] (2)因为α
1
,α
2
,α
3
线性无关,由(1)得A~B,因此只需求B的特征值.B的特征多项式|λE一B|=[*]=(λ一1)
2
(λ一4),因此B的特征值为1,1,4,所以A的特征值也为1,1,4. (3)我们首先求B的特征向量. ①当λ=1时,解(E-B)x=0,得同解方程为x
1
+x
2
+2x
3
=0,因此对应特征向量为η
1
= (一2,0,1)
T
,η
2
=(一1,1,0)
T
; ②当λ=4时,解(4E—B)x=0,得同解方程为[*]得对应特征向量为η
3
=(0,1,1)
T
. 令P
1
=(η
1
,η
2
,η
3
)=[*],因此有P
1
-1
BP
1
=[*] 再令Q=(α
1
,α
2
,α
3
),由(1)得B=Q
-1
AQ. 因此有P
1
-1
Q
-1
AQP
1
=[*].即(QP
1
)
-1
A(QP
1
)=[*] 令P=QP
1
即得所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Px4777K
0
考研数学三
相关试题推荐
已知X=AX+B,其中求矩阵X.
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使f’(ξ)-λ[f(ξ)-ξ]=1.
[2015年]设函数y=y(x)是微分方程y"+y’-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=_______.
[2010年]设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则().
设X1,X2,…,Xn,…相互独立且都服从参数为(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
设则f(x,y)在点(0,0)处
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设随机变量X服从参数为1的指数分布,则随机变量y=min{X,2}的分布函数().
随机试题
源自于儒家的“德本财末”思想,导致了我国历代王朝实行“重农抑商”的经济政策。()
钢管定位架采用∮10mm钢筋制作,其间隔尺寸一致,钢管管道每隔()米装一处定位架。
临川派的代表人物是()
初产妇,孕35周,合并急性乙型肝炎,血ALT1020U/L,AST851U/L,患者出现烦躁不安,给予口服新霉素的目的是
A.独活B.木瓜C.防己D.秦艽E.豨莶草具有祛风湿,止痛,利水消肿作用的药物是
以下说法正确的有()。
明明是一个小学生,英语老师关注他,他上课就积极举手发言,后来换了一位英语老师,不了解明明的情况,关注他少了。他上课就不积极了,而且英语成绩一落千丈。明明所表现的属于什么学习动机,属于哪种性质?
阅读短文回答题。千百年来,人们裹在梦幻的柔纱里,忘却尘世的喧嚣,单纯的心灵只愿意接受这一个李白:诗仙、醉圣、谪仙人……不,历史是斑驳的杂色!“安能摧眉折腰事权贵,使我不得开心颜”是______;“生不用封万户侯,但愿一识韩荆州”是______;
下列关于表的叙述中,错误的是
You_______callyourfather’snamedirectly.It’simpoliteinChina
最新回复
(
0
)