首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
admin
2020-09-25
42
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα=2αz+α,Aα=2α+3α.求:
(1)矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
(2)矩阵A的特征值.
(3)可逆阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由题意知A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 因此B=[*] (2)因为α
1
,α
2
,α
3
线性无关,由(1)得A~B,因此只需求B的特征值.B的特征多项式|λE一B|=[*]=(λ一1)
2
(λ一4),因此B的特征值为1,1,4,所以A的特征值也为1,1,4. (3)我们首先求B的特征向量. ①当λ=1时,解(E-B)x=0,得同解方程为x
1
+x
2
+2x
3
=0,因此对应特征向量为η
1
= (一2,0,1)
T
,η
2
=(一1,1,0)
T
; ②当λ=4时,解(4E—B)x=0,得同解方程为[*]得对应特征向量为η
3
=(0,1,1)
T
. 令P
1
=(η
1
,η
2
,η
3
)=[*],因此有P
1
-1
BP
1
=[*] 再令Q=(α
1
,α
2
,α
3
),由(1)得B=Q
-1
AQ. 因此有P
1
-1
Q
-1
AQP
1
=[*].即(QP
1
)
-1
A(QP
1
)=[*] 令P=QP
1
即得所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Px4777K
0
考研数学三
相关试题推荐
微分方程y"+2y’+5y=0的通解为________。
设f(x)在x=a处存在二阶导数,则
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求两条抛物线所围成的平面图形的面积Sn;
[2013年]设平面区域D由直线x=3y,y=3x及x+y=8围成,计算
[2013年]设函数f(x)在[0,+∞)上可导,f(0)=0,且证明:对上题中的a,存在ξ∈(0,a),使得
[2014年]下列曲线有渐近线的是().
设X1,X2,…,Xn,…相互独立且都服从参数为(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
随机试题
肺炎链球菌肺炎治疗的首选抗生素是()
教育行政措施
心脏、呼吸骤停病人复苏后医嘱使用20%甘露醇250ml静脉滴注,将该液体滴注完毕最多需要
下列选项中,不是引起牙齿松动原因的是
将不同区域或同一区域的不同计算机连接起来的一种方式叫( )。
丙公司是一家汽车配件制造企业,近期的销售量迅速增加。为满足生产和销售的需求,丙公司需要筹集资金495000元用于增加存货,占用期限为30天。现有3个可满足资金需求的筹资方案:方案1:利用供应商提供的商业信用,选择放弃现金折扣,信用条件为“2/10,N/4
甲公司和乙公司均为增值税一般纳税人,适用的增值税税率均为17%。甲公司于2014年9月30日向乙公司销售一批产品,应收乙公司的货款为2340万元(含增值税)。乙公司同日开出一张期限为6个月,票面年利率为8%的商业承兑汇票。在票据到期日,乙公司没有按期兑付,
德沃夏克是________民族音乐主要代表人,作品有《幽默曲》《水仙女》等。
阅读下面材料,并回答问题:一个人走进心理学实验室,一个心理学家问你,你在桌子上看见了什么。“一本书”“不错,当然是一本书。”“可是,你‘真正’看见了什么?”“你说的是什么意思?我‘真正’看见什么?我不是已经告诉你了,
TheyfirstarrivedonBritishshipsalmost200yearsago,withtheaimofcuttingbackarapidgrowthofrat(鼠)population.The
最新回复
(
0
)