首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
admin
2020-09-25
86
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα=2αz+α,Aα=2α+3α.求:
(1)矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
(2)矩阵A的特征值.
(3)可逆阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由题意知A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 因此B=[*] (2)因为α
1
,α
2
,α
3
线性无关,由(1)得A~B,因此只需求B的特征值.B的特征多项式|λE一B|=[*]=(λ一1)
2
(λ一4),因此B的特征值为1,1,4,所以A的特征值也为1,1,4. (3)我们首先求B的特征向量. ①当λ=1时,解(E-B)x=0,得同解方程为x
1
+x
2
+2x
3
=0,因此对应特征向量为η
1
= (一2,0,1)
T
,η
2
=(一1,1,0)
T
; ②当λ=4时,解(4E—B)x=0,得同解方程为[*]得对应特征向量为η
3
=(0,1,1)
T
. 令P
1
=(η
1
,η
2
,η
3
)=[*],因此有P
1
-1
BP
1
=[*] 再令Q=(α
1
,α
2
,α
3
),由(1)得B=Q
-1
AQ. 因此有P
1
-1
Q
-1
AQP
1
=[*].即(QP
1
)
-1
A(QP
1
)=[*] 令P=QP
1
即得所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Px4777K
0
考研数学三
相关试题推荐
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
曲线y=x2与直线y=x+2所围成的平面图形面积为________.
设A,B均为3阶矩阵,且满足AB=2A+B,其中A=,则|B-2E|=_______.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
已知X=AX+B,其中求矩阵X.
(95年)已知随机变量(X,Y)的联合概率密度为求(X,Y)的联合分布函数.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18—2Q1,p2=12一Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这
[2011年]曲线tan(x+y+π/4)=ey在点(0,0)处的切线方程为___________.
设随机变量X与Y相互独立且都服从参数为λ的指数分布,则下列随机变量中服从参数为2λ的指数分布的是().
随机试题
以下关于放射源的运输哪种说法是错误的
【背景资料】某水闸工程施工招标投标及合同管理过程中,发生如下事件:事件一:该工程可行性研究报告批准后立即进行施工招标。事件二:施工单位的投标文件所载工期超过招标文件规定的工期,评标委员会向其发出了要求澄清的通知,施工单位按时递交了答复,修改了工期计划
注册会计师遇到()时,应当拒绝出具验资报告并解除业务约定。
业主大会和业主委员会的工作经费由全体业主承担,经费的筹集、管理和使用在()中规定。
积极错觉是指当自我由于消极的信息而使自尊心面临威胁时,用理想化的自我、不现实的乐观或夸大的可控性感知等作为缓冲器,来保护自己的自尊。根据上述定义,下列选项属于积极错觉的是()。
科学家们认为,梦是大脑中主管人体各种功能的各个中心点联合作用的结果。人在睡眠时其部分脑细胞仍然在活动着,这就是梦的基础。最近的研究成果证实,做梦不仅不会影响人的睡眠和健康,而且还是保护大脑健康所必需的生理活动之一。以下哪项如果为真,最能支持上述结论?
已知A是3阶实对称矩阵,满足A4+2A3+A4+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
Theincreasingtransatlanticschism,accordingtothetext,resultsfrom______.Theviewmentionedinthethirdparagraphatl
Individual-to-groupcommunicationincludes______.Thecompanylobbiesare______.
AppleExpandsItsTouchy-feely(使人动心的)VisionThisweekend’slaunchofApple’siPadintheUS—withaninternationaldebutex
最新回复
(
0
)