首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα=2αz+α,Aα=2α+3α.求: (1)矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)矩阵A的特征值. (3)可逆阵P,使得P
admin
2020-09-25
63
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα=2αz+α,Aα=2α+3α.求:
(1)矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
(2)矩阵A的特征值.
(3)可逆阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由题意知A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 因此B=[*] (2)因为α
1
,α
2
,α
3
线性无关,由(1)得A~B,因此只需求B的特征值.B的特征多项式|λE一B|=[*]=(λ一1)
2
(λ一4),因此B的特征值为1,1,4,所以A的特征值也为1,1,4. (3)我们首先求B的特征向量. ①当λ=1时,解(E-B)x=0,得同解方程为x
1
+x
2
+2x
3
=0,因此对应特征向量为η
1
= (一2,0,1)
T
,η
2
=(一1,1,0)
T
; ②当λ=4时,解(4E—B)x=0,得同解方程为[*]得对应特征向量为η
3
=(0,1,1)
T
. 令P
1
=(η
1
,η
2
,η
3
)=[*],因此有P
1
-1
BP
1
=[*] 再令Q=(α
1
,α
2
,α
3
),由(1)得B=Q
-1
AQ. 因此有P
1
-1
Q
-1
AQP
1
=[*].即(QP
1
)
-1
A(QP
1
)=[*] 令P=QP
1
即得所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Px4777K
0
考研数学三
相关试题推荐
微分方程y'=1+x+y2+xy2的通解为_________。
(95年)已知随机变量(X,Y)的联合概率密度为求(X,Y)的联合分布函数.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
(1991年)求微分方程=x2+y2满足条件y|x=e=2e的特解.
(11年)设函数f(χ)在区间[0,1]上具有连续导数,f(0)=1,且满足f′(χ+y)dχdy=f(t)dχdy,其中Dt={(χ,y)|0≤y≤t-χ,0≤χ≤t)(0<t≤1).求f(χ)表达式.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
(2002年)设D1是由抛物线y=2x2和x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2。(I)试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体积V2;
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求两条抛物线所围成的平面图形的面积Sn;
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使f’(ξ)-λ[f(ξ)-ξ]=1.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是________。
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)