首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一民航班车上有20名旅客,自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,以X表示停车次数,求E(X)(设每位旅客下车是等可能的).
一民航班车上有20名旅客,自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,以X表示停车次数,求E(X)(设每位旅客下车是等可能的).
admin
2017-08-31
40
问题
一民航班车上有20名旅客,自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,以X表示停车次数,求E(X)(设每位旅客下车是等可能的).
选项
答案
令X
i
=[*](i=1,2,…,10),显然X=X
1
+X
2
+…+X
10
,因为任一旅客在第i个站不下车的概率为0.9,所以20位旅客都不在第i个站下车的概率为0.9
20
,从而第i个站有人下车的概率为1—0.9
20
,即X
i
的分布律为 [*] 于是E(X
i
)=1—0.9
20
(i=1,2,…,10),从而有 E(X)=[*]E(X
i
)=10(1一0.9
20
)=8.784.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Xr4777K
0
考研数学一
相关试题推荐
A、连续,偏导数存在B、连续,偏导数不存在C、不连续,偏导数存在D、不连续,偏导数不存在C
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
(2005年试题,22)设二维随机变量(X,Y)的概率密度为求:(X,Y)的边缘概率密度fX(x)fY(y);
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设随机变量X的概率密度为f(x)=,令随机变量Y=。求概率P{X≤Y}.
设二次型,满足,AB=0,其中求该二次型;
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0;(Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
设A,B为三阶矩阵,A~B,λ1=一1,λ2=1为矩阵A的两个特征值,又,则=_________
设X1,X2,…,Xn+1是来自正态总体N(μ,σ2)的简单随机样本,记,S2=已知,则k,m的值分别为
随机试题
Oneofthemostimportantfeaturesthatdistinguishesreadingfromlisteningisthenatureoftheaudience.【C1】______thewriter
肿瘤流行病学的研究目的是
A.卡泊芬净B.两性霉素BC.氟康唑D.灰黄霉素E.特比萘芬多烯类抗真菌药()。
会计档案的定期保管期限不包括()。
下列事件不符合科学依据的是()。
(1)原因很简单,会做生意的人不会去关注和解决社会问题,而真正帮助弱势群体做社会服务的人又缺乏经商的观念、能力和技巧(2)在这个背景之下,香港开办社会企业的往往不是社区里的个人,而是成熟的社会服务机构(3)因此社会企业在香港就像是机构的附属一样,缺乏创
马王堆汉墓帛画描绘的主题思想是()。
资本的有机构成是()。
领导让你和小李共同举办晚会,但是小李在上次的晚会组织过程中犯了错误,领导对小李印象不佳,小李也不配合你的工作,你怎么做小李的工作?
Ifeelthatwemustrespectthispointofviewandaccepttheconvictionofthemanypeoplewhoholdit,becausethatishowthe
最新回复
(
0
)