首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0) 的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0) 的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
admin
2019-02-23
68
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0) 的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与
之和,求f(x).
选项
答案
(Ⅰ)列方程.按平面图形的形心公式,形心的纵坐标为 [*] 而相应的曲边梯形的面积为∫
0
t
f(x)dx.见图6.2.按题意 [*] 即 ∫
0
t
f
2
(x)dx=2[∫
0
t
f(x)dx]
2
+∫
0
t
f(x)dx (x≥0). ① (Ⅱ)转化.将方程①两边求导,则 方程① <=> f
2
(t)=4f(t)
0
t
f(x)dx+f(t) <=>f(t)=4
0
t
f(x)dx+1 ② (①中令x=0,等式自然成立,不必另加条件). f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 方程①<=>方程②<=>[*] ③ (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边同乘μ(t)=e
-∫4dt
[*]e
-4t
得[f(t)ee
-4t
]’=0,并由初始条件得f(t)=e
4t
,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Yj4777K
0
考研数学二
相关试题推荐
设A,B都是n阶可逆矩阵,则().
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0,1)内有根.
讨论函数f(x)=的连续性.
设函数y=y(x)由方程组
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设A为n阶方阵,且n≥20证明:|A*|=|(一A)*|。
设(x)表示标准正态分布函数,随机变量X的分布函数F(x)=(x一1),求(1)a、b应满足的关系式;(2)E(X).
随机试题
______economically,onetinofoilwilllastatthreemonths.
汽油吹管火焰由外向内共有四层火焰,其中温度最高的是A.燃烧焰B.氧化焰C.混合焰D.还原焰E.氧化焰和燃烧焰
急惊风,湿热疫毒证的治则是慢惊风,阴虚风动证的治则是
关于要约收购的规定,正确的是()。
设事件A与B相互独立,且P(A)=等于()。
根据涉税犯罪法律制度的规定,下列关于徇私舞弊不移交刑事案件罪与徇私枉法罪的表述中,正确的有()。
HAMA所有项目采用()评分法。
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2则下列命题正确的是().
_____________是Linux中Samba的功能。
Theconceptofculturehasbeendefinedmanytimes,andalthoughnodefinitionhasachieveduniversalacceptance,mostofthede
最新回复
(
0
)