首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0) 的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0) 的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
admin
2019-02-23
82
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0) 的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与
之和,求f(x).
选项
答案
(Ⅰ)列方程.按平面图形的形心公式,形心的纵坐标为 [*] 而相应的曲边梯形的面积为∫
0
t
f(x)dx.见图6.2.按题意 [*] 即 ∫
0
t
f
2
(x)dx=2[∫
0
t
f(x)dx]
2
+∫
0
t
f(x)dx (x≥0). ① (Ⅱ)转化.将方程①两边求导,则 方程① <=> f
2
(t)=4f(t)
0
t
f(x)dx+f(t) <=>f(t)=4
0
t
f(x)dx+1 ② (①中令x=0,等式自然成立,不必另加条件). f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 方程①<=>方程②<=>[*] ③ (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边同乘μ(t)=e
-∫4dt
[*]e
-4t
得[f(t)ee
-4t
]’=0,并由初始条件得f(t)=e
4t
,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Yj4777K
0
考研数学二
相关试题推荐
设f(x)∈C[-π,π],且f(x)=,求f(x).
求微分方程的通解.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设α1=(1,2,-3)T,α2(3,0,1)T,α3(9,6,-7)T,β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T.已知r(α1,α2,α3)=r(β1,β2,β3),并且β可用α1,α2,α3线性表示,求a,b.
求f(χ)=的χ3的系数.
计算累次积分:I=∫01dχ∫1χ+1ydy+∫12dχ∫χχ+1ydy+∫23dχ∫χ3ydy.
二阶常系数非齐次线性方程y’’一4y’+3y=2e2x的通解为y=__________。
求不定积分
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则()
试证f(x)=∫0x(t一t2)sin2ntdt在x≥0上最大值不超过
随机试题
《饮酒》是一首()
公用设施的服务半径一般确定在()之间。
某供热企业为增值税一般纳税人,2016年2月取得供热收入860万元,其中向居民个人收取120万元(上述收入均含税),当月外购原料取得增值税专用发票注明税额70万元。该企业2016年2月应纳增值税()万元。
在三结合教育中,占主导地位的是()。
【2011.江西】西周六艺教育以()为中心。
确立课程目标的依据有()
当一批受访者被问及他们所持的政治立场时,25%把自己归为保守派,24%把自己归为激进派,51%把自己归为中间派。但当涉及某个具体的政治问题时,77%的受访者所支持的观点被普遍认为代表了激进派的立场。如果上述断定为真,以下哪项一定为真?()
A、 B、 C、 D、 B
这句话越查越搞不清楚意思了,怎么办好呢?
A、Hislastdentist.B、Hismother.C、Asalesman.D、Hisfriend.D事实细节题。对话中男士明确提到自己的一个朋友将DrAllen推荐给自己。
最新回复
(
0
)