首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
admin
2018-04-15
58
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f’(0)存在,且f’(0)=A.
选项
答案
(1)作辅助函数φ(x)=f(x)一f(a)一[*](x一a),易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)—f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*](0,δ),使得 [*] 故f’
+
(0)存在,且f’
+
(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Yr4777K
0
考研数学一
相关试题推荐
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.求D绕直线x=e旋转一周所得旋转体的体积V.
设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:对于(一1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)区间内有且仅有一个x,使得f(x)=x.
设总体X的概率密度函数如下,X1,X2,…,Xn为总体X的样本。确定常a;
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,-2]T,则()。
设随机变量X服从正态分布N(μ,σ2)(σ>0),且P(X>σ)
设A,B,C,D是4个四阶矩阵,其中A≠O,|B|≠0,|C|≠0,D≠O,且满足ABCD=O。若r(A)+r(B)+r(C)+r(D)=r,则r的取值范围是()。
计算线积分(y2+z2)dx+(z2+x2)dy+(x2+y2)dz,其中c是曲线x2+y2+z2=2Rx,x2+y2+z2=2ax(z>0,0<a<R),且按此方向进行,使它在球的外表面上所围区域∑在其左方。
椭球面S1是椭圆=1绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转而成.(1)求S1及S2的方程.(2)求S1与S2之间的立体体积.
假设随机变量x在区间[一1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于()
随机试题
15、2004年6月1日,甲火锅公司向丰台区环保局申请,并依法取得环保批字[2004]1131。2004年9月,甲公司经营地点所在周围小区居民以原告在经营时存在噪音、油烟和热污染扰民为由向丰台区人民政府申请复议,要求撤销[2004]1131批字。2004年
“修身、齐家、治国、平天下”出自()。
全髋关节置换术后要点不正确的是
A.疾病的原因B.疾病的条件C.疾病的诱因D.疾病的危险因素E.疾病的外因
在计算建设用地标准时(),人口数宜以()为准。
2015年4月28日,甲公司董事会决议将其闲置的厂房出租给丙公司。同日,与丙公司签订了经营租赁协议,租赁期开始日为2015年5月1日,租赁期为5年,年租金600万元,于每年年初收取。2015年5月1日,甲公司将腾空后的厂房移交丙公司使用,当日该厂房的公允价
在儿童言语发展中,学前儿童掌握词类的顺序正确的是()。
义务教育阶段的数学课程应突出体现_______、普及性和发展性,使数学教育面向全体学生.
每到春季,我国北方地区经常会出现浮尘、扬沙和沙尘暴等恶劣天气,我国沙尘暴的主要源地是()。
A、Todiscoverhowlongtheirancestorslived.B、Toanalyzehowtheirappearancehasevolved.C、Tofindouthowadiseasehasspr
最新回复
(
0
)