首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
admin
2018-04-15
56
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f’(0)存在,且f’(0)=A.
选项
答案
(1)作辅助函数φ(x)=f(x)一f(a)一[*](x一a),易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)—f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*](0,δ),使得 [*] 故f’
+
(0)存在,且f’
+
(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Yr4777K
0
考研数学一
相关试题推荐
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…).证明存在,并求该极限;
=___________
已知f(x)在x=0的某个邻域内连续,且f(0)=0.=2,则在点x=0处f(x)
如果x1x2>0,试证在x1与x2之间必至少存在一点,使=(1-ξ)eξ(x1-x2)成立。
以下四个命题,正确的个数为()①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0;②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=③
设函数f(x)满足f(1)=0,f’(1)=2.求极限
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;(Ⅲ)求可逆矩阵P,使
有甲、乙、丙三个盒子,第一个盒子里有4个红球1个白球,第二个盒子里有3个红球2个白球,第三个盒子里有2个红球3个白球,先任取一个盒子,再从中先后取出3个球,以X表示红球数求X的分布律;
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
随机试题
书刊版心的主要组成要素包括()等。
措施作业施工是指以增产(注)为目的,对()进行改造、改变采油方式或增大抽汲参数的施工作业。
各国对国际证券发行的审核制度主要有注册制和()
人lgE分子不存在
粗集料针、片状颗粒含量试验,对于粒径大于()的碎石或卵石可用卡尺检测。
燃气管道按敷设方式可分为()。
下列各项中,属于分类所得税制度不足之处的是()。
一般资料:求助者,女性,14岁,初中二年级学生。案例介绍:求助者是住校生,三个多月前睡觉时梦见一个黑衣女鬼缠着自己,当时被吓醒,非常害怕,一直哭到天亮。又听到有些同学也说梦见过鬼,说鬼魂会附体。求助者更加害怕于是走读,回家睡觉。尽管家里有妈妈陪着
城乡差距
WhenJackcamein,I_______dinnerwithmyparents.
最新回复
(
0
)