(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在

admin2018-04-15  40

问题 (1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a).
    (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在,且f’(0)=A.

选项

答案(1)作辅助函数φ(x)=f(x)一f(a)一[*](x一a),易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)—f(a)=f’(ξ)(b一a). (2)任取x0∈(0,δ),则函数f(x)满足在闭区间[0,x0]上连续,开区间(0,x0)内可导,因此由拉格朗日中值定理可得,存在[*](0,δ),使得 [*] 故f’+(0)存在,且f’+(0)=A.

解析
转载请注明原文地址:https://kaotiyun.com/show/3Yr4777K
0

最新回复(0)