首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(Ⅰ)与(Ⅱ)的公共解.
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(Ⅰ)与(Ⅱ)的公共解.
admin
2017-06-14
64
问题
已知ξ
1
=(1,1,0,0)
T
,ξ
2
=(1,0,1,0)
T
,ξ
3
=(1,0,0,1)
T
是齐次线性方程组(Ⅰ)的基础解系,η
1
=(0,0,1,1)
T
,η
2
=(0,1,0,1)
T
是齐次线性方程组(Ⅱ)的基础解系,求方程组(Ⅰ)与(Ⅱ)的公共解.
选项
答案
方程组(Ⅰ)与(Ⅱ)的通解分别是 k
1
ξ
1
+k
2
ξ
1
+k
3
ξ
1
与l
1
η
1
+l
2
η
2
. 若有不全为零的常数a
1
,a
2
,a
3
,b
1
,b
2
,使 a
1
ξ
1
+a
2
ξ
2
+a
3
ξ
3
=b
1
η
1
+b
2
η
2
, 则b
1
η
1
+b
2
η
2
就是方程组(Ⅰ)与(Ⅱ)的非零公共解,对于a
1
ξ
1
+a
2
ξ
2
+a
3
ξ
3
-b
1
η
1
-b
2
η
2
=0,对系数矩阵作初等行变换,有 [*] 通解为t(1,-1,0,-1,1)
T
,即a
1
=t, a
2
=-t, a
3
=0, b
1
=-t, b
2
=t. 所以方程组(Ⅰ)与(Ⅱ)的公共解为t(ξ
1
-ξ
2
)=(0,t,-t,0)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Zu4777K
0
考研数学一
相关试题推荐
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.令P=(α1,α2,α3),求p-1AP.
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
(2003年试题,三)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D(见图1一3—5).求D的面积A;
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为求A;
(1998年试题,八)设正项数列{an}单调减少,且发散,试问级数是否收敛?并说明理由.
已知曲线在直角坐标系中由参数方程给出:x=t+e-1,y=2t+e-2t(t≥0).求y=y(x)的渐近线.
设曲线(正整数n≥1)在第一象限与坐标轴围成图形的面积为I(n),证明:
随机试题
阅读《麦琪的礼物》中的一段文字,然后回答下列问题。我的拙笔在这里告诉了诸位一个没有曲折、不足为奇的故事:那两个住在一间公寓里的笨孩子,极不聪明地为了对方牺牲了他们一家最宝贵的东西。但是,让我们对目前一般聪明人说最后一句话,在所有馈赠礼物的人当中,那两个人
六腑的共同生理特点是
A.寒凉药B.开窍药C.发汗药D.苦寒清热药E.淡渗利湿药阴虚津亏者忌用()。
在混凝土工程中,掺入粉煤灰,硅粉可减少水泥用量,降低水化热,()混凝土裂缝的产生。
下列房地产统计指标中,属于时点指标的有()。
开户银行对本行签发的超过大额现金标准、注明“现金”字样的银行汇票、银行本票,视同大额现金支付,实行登记备案制度。()
甲食品有限公司(以下简称“甲公司”,增值税一般纳税人)。2016年2月发生下列经营业务:(1)从某农业生产者处收购花生,开具的收购凭证上注明收购价格为50000元,货物验收入库;支付某运输企业(一般纳税人)运费并取得增值税专用发票,注明运费254.56元
100个骨牌整齐地排成一列,依次编号为1、2、3、4…99、100。如果第一次拿走所有偶数位置上的牌,第二次再从剩余牌中拿走所有偶数位置上的牌,第三次再从剩余牌中拿走所有奇数位置上的牌,第四次再从剩余牌中拿走所有奇数位置上的牌,第五次再从剩余牌中拿走所有偶
求
Itisnecessaryforthevaluablespeciesto______itselfinordertostayinexistence.
最新回复
(
0
)