首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
admin
2013-05-30
136
问题
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
选项
答案
证设x。为(-∞,+∞)内的任一点,由题设,有ψ(x。)≤J(x。)≤ψ(x。) 由 ψ(x)≤f(x)≤ψ(x)及函数的单调增加性,得 f(ψ(x。)≤f’(f(x。)) ψ(ψ(x。))≤f(ψ(x。)) 从而ψ(ψ(x。))≤f(f(x。)) 同理可证 f(f(x。))≤ψ(ψ(x。)) 由x。的任意,可知在(-∞,+∞)内,有 ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
解析
转载请注明原文地址:https://kaotiyun.com/show/0X54777K
0
考研数学一
相关试题推荐
设f(x,y)与ψ(x,y)均为可微函数,且ψ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件ψ(x,y)=0下的一个极值点,下列选项正确的是
(2010年试题,4)设m,n是正整数,则反常积分的收敛性().
(18年)若,则
二元函数f(x,y)=在点(0,0)处
已知函数y=f(x)对一切x满足xf"(x)+3x[f’(x)]2=1-ex,若f’(x0))=0(x0)≠0),则
设向量组α1,α2,α3是Ax=b的3个解向量,且r(A)=1,α1+α2=(1,2,3)T,α2+α3=(0,-1,1)T,α3+α1=(1,0,-1)T,求Ax=b的通解.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设函数f(x)=ax-b㏑x(a>0)有两个零点,则b/a的取值范围是()
当x→0时,(-1)ln(1+x2)是比xkarctanx高阶的无穷小,而xkarctanx是比(1-)∫0xdt高阶的无穷小,则k的取值范围是()。
随机试题
孔子对周礼的重要修正之一是()
嘶哑样咳嗽,可见于
A.长期使用一种受体的激动药后,该受体对激动药的敏感性下降B.长期使用一种受体的激动药后,该受体对激动药的敏感性增强C.长期使用受体拮抗药后,受体数量或受体对激动药的敏感性增加D.受体对一种类型受体的激动药反应下降,对其他类型
柴油机排气冒黑烟是因为()。
关于x的一元二次方程x2一=0有实根,其中a是实数,求a99+x99的值.
和《庄子》类似,都善于运用比喻和寓言故事进行说理的作品是:
简述西周的教育特点。
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)一f(a)=ξf’(ξ)
High-TechWarfare(战争)Today,high-techwarfareisnolongeranabstractconcept,butarealissue.Technology(51)tactics,socio
Hisinitialbroadcastingsuccessasayoungmanwasdueatleastasmuchtohisconsiderableprofessional______asitwastohis
最新回复
(
0
)