首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
admin
2018-11-20
35
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为10y
1
2
一4y
2
2
一4y
3
2
,Q的第1列为
(1)求A.
(2)求一个满足要求的正交矩阵Q.
选项
答案
标准二次型10y
1
2
一4y
2
2
一4y
3
2
的矩阵为 [*] 则Q
-1
AQ=Q
T
AQ=B,A和B相似.于是A的特征值是10,一4,一4. (1)Q的第1列α
1
=[*]是A的属于10的特征向量,其[*]倍η
1
=(1,2,3)
T
也是属于10的特征向量.于是A的属于一4的特征向量和(1,2,3)
T
正交,因此就是方程 x
1
+2x
2
+3x
3
=0 的非零解.求出此方程的一个正交基础解系η
2
=(2,一1,0)
T
,η
3
=[*] 建立矩阵方程A(η
1
,η
2
,η
3
)=(10η
1
,一4η
2
,一4η
3
),用初等变换法解得 [*] (2)将η
2
,η
3
单位化得α
3
=[*] α
3
=[*] 则正交矩阵Q=(α
1
,α
2
,α
3
)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/3fW4777K
0
考研数学三
相关试题推荐
设A,B,C,D都是n阶矩阵,r(C4+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设A为N阶矩阵,且A2—2A一8E=0.证明:r(4E一A)+r(2E+A)=n.
向量组α1,αs线性无关的充要条件是().
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
已知齐次线性方程组同解,求a,b,c的值。
已知方程组的一个基础解系为(b11,b12,…,b1.2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
袋中有口个白球与6个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
随机试题
A.肺鳞状细胞癌B.肺小细胞癌C.肺腺癌D.肺巨噬细胞癌在化生的基础上发生的癌是
A.卡环体B.支托C.卡环臂D.连接体E.固位网可摘局部义齿主要起支持作用的是
男孩,3岁,常有排尿中断现象,并伴有疼痛,患儿常用手搓拉阴茎,改变体位后,能够恢复排尿。患儿最可能的诊断是
流通蒸气灭菌时的温度为
A.主承托区B.副承托区C.边缘封闭区D.缓冲区E.有牙区上下颌前牙区牙槽嵴顶属于
(用户名:12;账套:014;操作日期:2012年1月1日)输入期初采购专用发票。2011.年12月27日,采购部收到G公司开具的专用发票一张,发票号为A01,商品为打印机,数量1台,每台无税单价7000元,增值税率17%,货物在途。
填制《入境货物报检单》中的“合同号”栏,应填写对外贸易合同、订单或形式发票号码和装箱单的号码。( )
()是指借款人将本人或第三人的物业抵押给银行,银行按抵押物评估值的一定比率为依据,设定个人最高授信额度的贷款。
下列一审行政案件中,由中级人民法院管辖的有()。
如何制定教学策略?
最新回复
(
0
)