首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有2个四元齐次线性方程组: 方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
设有2个四元齐次线性方程组: 方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
admin
2016-12-16
77
问题
设有2个四元齐次线性方程组:
方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
选项
答案
关于(Ⅰ)和(Ⅱ)的公共解,可以用下列几种方法求之. 把(Ⅰ)、(Ⅱ)联立起来直接求解,设联立方程组的系数矩阵为A,用初等行变换将其化为含最高阶单位矩阵的矩阵,直接写出其基础解系,从而求出所有的非零公共解. [*] 由于n一r(A)=4一3=1,基础解系是[一1.,1,2,1]
T
,从而方程组(Ⅰ)、(Ⅱ)有公共解,且所有的非零公共解为 k[一1,1,2,1]
T
,k是任意非零实数: 通过(I)与(Ⅱ)各自的通解寻找公共解,为此,先求方程组(Ⅱ)的基础解系为 η
1
=[0,1,1,0]
T
,η
2
=[一1,一1,0,1]
T
. 下求方程组(Ⅰ)的基础解系,由[*]知,其基础解系含2个解向量: ξ
1
=[0,0,1,0]
T
,ξ
2
=[一1,1,0,1]
T
. 那么k
1
ξ
1
+k
2
ξ
2
,l
1
η
1
+l
2
η
2
分别是(Ⅰ)、(Ⅱ)的通解,令其相等,则有 k
1
[0,0,1,0]
T
+k
2
[一1,1,0,1]
T
=l
1
[0,1,1,0]
T
+l
2
[一1,一1,0,1]
T
, 由此得 [一k
2
,k
2
,k
1
,k
2
]
T
=[一l
2
,l
1
一l
2
,l
1
,l
2
]
T
. 比较两个向量对应分量得到k
1
=l
1
=2k
2
=2l
2
所有非零公共解是 2k
2
[0,0,1,0]
T
+k
2
[一1,1,0,1]
T
=k
2
[一1,1,2,1]
T
, 其中k
2
为非零任意常数.
解析
两个齐次线性方程组的公共解可用多种方法求得.
转载请注明原文地址:https://kaotiyun.com/show/tBH4777K
0
考研数学三
相关试题推荐
试问:a为何值时,函数f(x)=asinx+1/3sin3x在x=π/3处取得极值?它是极小值还是极大值?并求此极值.
求半径为R,中心角为2π/3的均匀物质圆弧对位于圆心处的单位质点的引力.
[*]
求下列函数在指定点Mo处沿指定方向l的方向导数:(1)z=x2+y2,Mo(1,2),l为从点(1,2)到点的方向;(2)z=xexy,Mo(-3,0),l为从点(-3,0)到点(-1,3)的方向;(3)u=xyz,Mo(5,1,2),l=(4,3,
设有曲面积分,其中∑为将原点包围在其内部的光滑闭曲面,n=(cosα,cosβ,cosγ)为∑上的动点M处的外法向量,r=|OM|.(1)如果∑1与∑2为满足上述条件的两张曲面,∑1位于∑2的内部,并记在∑1和∑2上的上述积分值分别为I1和I2,证明I1
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
计算不定积分
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max{x,y}≤1}=________.
随机试题
重农主义
若要提高螺纹连接的自锁性能,可以()。
项目融资的框架结构中所包括的基本模块有( )。
基金业协会应当在私募基金登记材料齐备后()个工作日内通过网站公告私募基金名单以及基本情况的方式,为私募基金办结登记手续。
若不考虑其他因素,人民币升值对出口的影响是()。
资料档案收集与入住期物业管理工作密切相关,须同步进行的是()。
《中华人民共和国计量法》于()起施行。
下列《水浒传》中人物、绰号及其事迹对应正确的一项是()。
水平迁移是指处于同一抽象和概括水平的经验之间的相互影响,是在难度、复杂程度上属于同一水平层次的两种经验之间的相互影响;垂直迁移是指处于不同抽象和概括水平的经验之间的相互影响,是具有较高概括水平的上位经验与具有较低概括水平的下位经验之间的相互影响。根据上述
Thework-lifebalanceisdead.Bythis,I’mnotadvocatingthatyoushouldgiveupyourpursuitofhavingafulfillingcareeran
最新回复
(
0
)