首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αm线性无关的充分必要条件是( ).
向量组α1,α2,…,αm线性无关的充分必要条件是( ).
admin
2020-03-01
39
问题
向量组α
1
,α
2
,…,α
m
线性无关的充分必要条件是( ).
选项
A、向量组α
1
,α
2
,…,α
m
,β线性无关
B、存在一组不全为零的常数k
1
,k
2
,…,k
m
,使得k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0
C、向量组α
1
,α
2
,…,α
m
的维数大于其个数
D、向量组α
1
,α
2
,…,α
m
的任意一个部分向量组线性无关
答案
D
解析
(A)不对,因为α
1
,α
2
,…,α
m
,β线性无关可以保证α
1
,α
2
,…,α
m
线性无关,但α
1
,α
2
,…,α
m
,线性无关不能保证α
1
,α
2
,…,α
m
,β线性无关;
(B)不对,因为α
1
,α
2
,…,α
m
线性无关可以保证对任意一组非零常数k
1
,k
2
,…,k
m
,有k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0,但存在一组不全为零的常数k
1
,k
2
,…,k
m
使得k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0不能保证α
1
,α
2
,…,α
m
线性无关;
(C)不对,向量组α
1
,α
2
,…,α
m
线性无关不能得到其维数大于其个数,如α
1
=
,α
2
=
线性无关,但其维数等于其个数,选(D)
转载请注明原文地址:https://kaotiyun.com/show/3gA4777K
0
考研数学二
相关试题推荐
=_______.
设f(x)在x=a的邻域内二阶可导且f’(a)≠0,则=_______
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
(Ⅰ)请用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则Ax→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)-f(x0)与△x比较是()无穷小,△y-df(x)与△x比较是()无
设y=f(x)是区间[0,1]上任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间在区间[0,x0]上以f(x0)为高的矩形的面积等于在区间[x0,1]上以y=f(x)为曲面的曲边梯形的面积.(2)又设f(x)在(0,1)上可导,且f’(x)
下列说法不正确的是()
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx;(Ⅱ)求
设则f’x(0,1)=_____________.
设二元可微函数F(x,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成F(x,y)=H(r)(r=),求此二元函数F(x,y).
随机试题
肝门横断层面上的结构不包括
下列关于《中华苏维埃共和国婚姻法》的内容,下列表述正确的是()
A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积Ⅲ型超敏反应
寄生主要对象是封盖后的老幼虫和蛹,它们靠吸食幼虫和蛹体汁液进行繁殖,经常造成幼虫无法化蛹,或蛹体腐烂于巢房。此病是()。
下列各项中,属于管理人员行为规范的是
对自动控制要求的核心是必须保证控制的()。
某钢筋混凝土结构工程的框架柱表面出现局部蜂窝麻面,经调查分析,其承载力满足设计要求,则对该框架柱表面质量问题一般的处理方式是()。
2016年10月19日凌晨,神舟十一号飞船与()自动交会对接成功。
甲公司与乙公司签订一项食品买卖合同,但因所在地供电局无故断电,甲公司无法生产,以致交付迟延。就此给乙公司造成的损失______。
THERE’SABIGMARKETOUTTHERE!DouglasMarketingCompanyisofferinganewseriesofseminarsthatcanhelpyoufindthema
最新回复
(
0
)