首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实矩阵A为反对称矩阵,即AT=一A.证明: (A—E)(A+E)一1是正交矩阵.
设n阶实矩阵A为反对称矩阵,即AT=一A.证明: (A—E)(A+E)一1是正交矩阵.
admin
2016-01-11
64
问题
设n阶实矩阵A为反对称矩阵,即A
T
=一A.证明:
(A—E)(A+E)
一1
是正交矩阵.
选项
答案
由于(A—E)(A+E)
-1
[(A—E)(A+E)
-1
]
T
=(A—E)(A+E)
一1
(A一E)
一1
(A+E) =(A—E)[(A—E)(A+E)]
一1
(A+E) =(A—E)[(A+E)(A—E)
一1
(A+E) =(A一E)(A一E)
一1
(A+E)
一1
(A+E) =EE=E. 故(A—E)(A+E)
一1
是正交矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/3q34777K
0
考研数学二
相关试题推荐
一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X表示同时需要调整的部件数.试求X的概率分布、数学期望E(X)和方差D(X).
方程的通解为___________.
微分方程的通解为__________.
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:∫01[f(x)+x(1-x)f”(x)]dx=0.
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件=1(a>0,b>0)下取得最小值,求a,b的值.
设曲线Y=a与y=㏑(x>0)在点(x0,y0)处有公切线.求两曲线与x轴所围图形绕x轴旋转一周所得旋转体的体积V.
积分=________.
设函数f(x)有连续的导数,且f(0)=0,f’(0)≠0,F(x)=∫0x(x2-t2)f(t)dt,且当n→0时,函数F’(x)与xk为同阶无穷小,则k等于().
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是线性方程组Ax=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三
随机试题
4岁男孩在随母亲旅游中,进食小店卖的水果沙拉,回家2d后,出现严重腹部痉挛痛,大便次数不断增加,且多次便血,伴发热、呕吐,到医院急诊,检查有溶血性贫血及血小板减少等溶血性尿毒综合征。致病菌可能是什么()
我国第一部描写解放战争的优秀长篇小说是()。
某船舶运输公司制定的海上旅客运输合同中的下列条款,无效的有:()
A.S-100蛋白和肌动蛋白B.角蛋白C.淀粉酶D.肌球蛋白E.甲状腺球蛋白鉴别腺泡细胞癌中透明细胞选用
采用成本法核算长期股权投资时,下列各项中应相应调减“长期股权投资”账面价值的是( )。
甲、乙双方约定,由丙每月代乙向甲偿还债务500元,期限2年。丙履行5个月后,以自己并不对甲负有债务为由拒绝继续履行。甲遂向法院起诉,要求乙、丙承担违约责任。法院应如何处理?()
下列选项中,不属于辩证否定的是()。
已知矩阵相似于对角矩阵Λ.(1)求a的值;(2)利用正交变换将二次型XTBX化为标准形,并写出所用的正交变换;(3)指出曲面XTBX=1表示何种曲面.
HowtoapproachReadingTestPartThree•InthispartoftheReadingTestyoureadalongertextandanswersixquestions.•Fi
Hello,everyone.Itisagreatpleasuretohaveyouasassistantstohelp【B1】______theparty.Iamsendingaroundaformforyou
最新回复
(
0
)