首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0. 证明:存在不同的ξ,η∈(0,1),使得ξ2f”(ξ)=2f’(η)( ξ-1).
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0. 证明:存在不同的ξ,η∈(0,1),使得ξ2f”(ξ)=2f’(η)( ξ-1).
admin
2022-05-20
83
问题
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.
证明:存在不同的ξ,η∈(0,1),使得ξ
2
f”(ξ)=2f’(η)( ξ-1).
选项
答案
由上题,有 ∫
0
1
[x
2
f"(x)-2f(x)]dx=0. 由积分中值定理,可知存在一点ξ∈(0,1),使得ξ
2
f"(ξ)-2(ξ)=0,即 ξ
2
f"(ξ)-2[f(ξ)-f(1)]=0. 由拉格朗日中值定理,可知存在一点η∈(ξ,1),使得 ξ
2
f"(ξ)=2f’(η)(ξ-1).
解析
转载请注明原文地址:https://kaotiyun.com/show/9FR4777K
0
考研数学三
相关试题推荐
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex一yey=zex所确定,求du.
设X1,X2,…,Xn,是取自二项总体的简单随机样本,是其样本均值,则
设,B=A-1,则B的伴随矩阵B*的所有元素之和等于________.
设B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(I)求常数a,b.(Ⅱ)求BX=0的通解.
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)—g(b)=0.g(x)≠0.任意x∈(a,b);
设二次型的正、负惯性指数都是1.用正交变换将二次型化为标准形;
10件产品中有3件次品,7件正品,每次从中任取1件,取后不放回,求下列事件的概率:(1)第三次取得次品;(2)第三次才取得次品;(3)已知前两次没有取到次品,第三次取得次品;(4)不超过三次取到次品.
有16件产品,12个一等品,4个二等品.从中任取3个,至少有1个是一等品的概率为________.
改变积分次序并计算
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ”(y).
随机试题
某设备的原始价值为171500元,每年低劣化增加值为7000元,在不考虑残值的情况下该设备的最佳更新年限为()年。
A.伤后彻底清创、改善局部循环B.控制和解除痉挛、预防窒息C.使用破伤风抗毒素中和游离毒素D.给予大剂量青霉素,抑制破伤风杆菌治疗破伤风的关键措施是
A.四环三萜皂苷B.五环三萜皂苷C.甾体皂苷D.强心苷E.氰苷人参皂苷Rb1属于()。
下列情况中,当事人或案外人可以提出异议的有:
某建造于大城市市区的28层公寓,采用钢筋混凝土剪力墙结构体系。平面为矩形,共6个开间,横向剪力墙间距为8.lm,其中间剪力墙的计算简图如下图所示。混凝土强度等级采用C30,纵向钢筋采用HRB335钢,箍筋采用HPB235钢。as=a′s=35mm。
下列有关期权的叙述错误的是( )。
马克思主义的发展观是()的辩证统一。
下列关于饮食与健康的说法,错误的是:
一直到20世纪90年代中期,我们都在试图重新寻找自己的精神家园,钱穆、钱钟书和陈寅恪的著作和传记成了畅销书。《顾准文集》《顾准日记》________于市场,这个中国“市场经济第一人”,坚持学术自由的孤独者形象,________了人们对于知识分子的期许。《傅
"Junkscience"ishowElliotMorley,Britain’sministerresponsibleforgeneticallymodifiedfarming,describesstudiesthatcla
最新回复
(
0
)