首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是线性方程组Ax=0的两个解. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTQ=L; (Ⅲ)求A及(A-(3/2)E)6,其中E为三
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是线性方程组Ax=0的两个解. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTQ=L; (Ⅲ)求A及(A-(3/2)E)6,其中E为三
admin
2013-09-15
112
问题
设三阶实对称矩阵A的各行元素之和均为3,向量a
1
=(-1,2,-1)
T
,a
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
Q=L;
(Ⅲ)求A及(A-(3/2)E)
6
,其中E为三阶单位矩阵.
选项
答案
(Ⅰ)依题意,因为[*] 所以3是矩阵A的一个特征值,a=(1,1,1)
T
是A属于3的特征向量, 又因为Aa
1
=0=0a
1
,Aa
2
=0=0a
2
,所以a
1
,a
2
是矩阵A属于λ=0的特征向量, 所以A的特征值是3、0、0,且λ=0的特征向量为 k
1
,(-1,2,-1)
T
+k
2
(0,-1,1)
T
(k
1
,k
2
是不全为0的常数)’ λ=3的特征向量为k=(1,1,1)k
1
(k≠0为常数). (Ⅱ)由于a
1
,a
2
不正交,所以要做Schmidt正交化: β
1
=a
1
=(-1,2,-1)
T
, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FB34777K
0
考研数学二
相关试题推荐
曲线x+y+e2xy=0在点(0,-1)处的切线方程为__________.
(2014年)下列曲线有渐近线的是()
(96年)设方程χ=yy确定y是χ的函数,则dy=_______.
(2010年)设函数f(x),g(x)具有二阶导数,且g’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一个充分条件是()
(2002年)设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex一yey=zez所确定,求du。
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
(91年)求极限,其中n为给定的自然数.
设A为m×n实矩阵,E为n阶单位矩阵。已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵。
(91年)试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
随机试题
影响管理幅度的因素有()
定金的数额可由当事人约定,但不得超过主合同标的额的()
康某是甲国驻华使馆的官员。与康某一起生活的还有其妻、其子(26岁,已婚)和其女(15岁)。该三人均具有甲国国籍。一日,四人在某餐厅吃饭,与邻桌发生口角,引发斗殴并致对方重伤。警方赶到时,斗殴已结束。甲国为《维也纳外交关系公约》的缔约国,与我国没有相关的其他
(2009年)微分方程y"+ay’2=0的满足条件y|x=0=0,y’|x=0=-1的特解是()。
利用项目管理的先进技术和工具保证项目效率和效益的过程是()。
合同法律关系是指合同法律规范调整的当事人在民事流转过程中形成的()关系。
关于工作研究中的方法研究和时间研究的说法,正确的是()。
如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆.若最大拱高h为6m,则隧道设计的拱宽l是多少?
Asfoodistothebody,soislearningtothemind.Ourbodiesgrowandmusclesdevelopwiththeinputofadequatenutritious【M1
HowtoTakeLectureNotes1.Whatiseffectivenote-taking?To【T1】thematerialandwritedownkeyelements【T1】______2.Takenot
最新回复
(
0
)