首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05年)已知齐次线性方程组同解, 求a,b,c的值.
(05年)已知齐次线性方程组同解, 求a,b,c的值.
admin
2017-05-26
54
问题
(05年)已知齐次线性方程组
同解,
求a,b,c的值.
选项
答案
方程组(Ⅱ)的未知量个数大于方程的个数,故方程组(Ⅱ)有非零解.因为方程组(Ⅰ)与(Ⅱ)同解,所以方程组(Ⅰ)的系数矩阵的秩小于3. 对方程组(Ⅰ)的系数矩阵施以初等行变换: [*] 从而a=2. 此时,方程组(Ⅰ)的系数矩阵可由初等行变换化为 [*] 故(-1,-1,1)
T
是方程组(Ⅰ)的一个基础解系. 将χ
1
=-1,χ
2
=-1,χ
3
=1代入方程组(Ⅱ)可得:b=1,c=2或b=0,c=1. 当b=1,c=2时,对方程组(Ⅱ)的系数矩阵施以初等行变换,有 [*] 由于(1)式与(2)式右边矩阵的行向量组等价,故方程组(Ⅰ)与(Ⅱ)同解. 当b=0,c=1时,方程组(Ⅱ)的系数矩阵可由初等行变换化为 [*] 由于(1)式与(3)式右边矩阵的行向量组不等价,故方程组(Ⅰ)与(Ⅱ)的解不相同. 综上所述,当a=2,b=1,c=2时,方程组(Ⅰ)与(Ⅱ)同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/3tH4777K
0
考研数学三
相关试题推荐
设随机变量x1~N(0,1),X2一B(),X3服从于参数为λ=1的指数分布,设则矩阵A一定是().
设函数,则下说法中正确的是().
微分方程y"+y=cosx的一个特解的形式为y"=().
设A、B为两随机事件,且BA,则下列结论中肯定正确的是()·
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记(Ⅱ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=l时,求D(T).
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设向量组(Ⅰ)a1,a2,…,as,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i:1,2,…,s)均可以由a1,…,as线性表示,则().
设A是n阶方阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
计算下列积分:∫-12[x]max{1,e-x}dx,其中,[x]表示不超过x的最大整数.
随机试题
有以下程序:#include#definef(x)x*x*xmain(){inta=3,s,t;s=f(a+1);t=f((a+1));printf("%d,%d\n",s,t);}
跨国公司出于垄断技术研究成果的目的,往往把主要的、设备齐全的研究机构设在母国,即在研究与开发的区位选择中采取()
丙找甲借自行车,甲的自行车与乙的很相像,均放于楼下车棚。丙错认乙车为甲车,遂把乙车骑走。甲告知丙骑错车,丙未理睬。某日,丙骑车购物,将车放在商店楼下,因墙体倒塌将车砸坏。下列哪些表述是正确的?(2012年卷三第58题)
在台湾,有几种情况可构成不在地主?这几种情况分别为?
关于加气混凝土砌块工程施工,正确的是()。
某施工企业2017年12月初拥有固定资产原值为14400万元,12月提取折旧80万元。在12月份,该企业固定资产发生以下变动:(1)12月10日,竣工一幢办公大楼,入账价值为2000万元,折旧年限定为20年,预计净残值率为4%。该办
根据《劳动保障监察条例》,下列各项中,不属于劳动保障监察形式的是()。
部一致性信度()。
2018年11月30日,国家主席习近平出席在布宜诺斯艾利斯举行的二十国集团领导人第十三次峰会第一阶段会议,并发表题为《登高望远,牢牢把握世界经济正确方向》的重要讲话。下列关于此次讲话的内容,说法错误的是:
在赫尔巴特的课程理论中,根据学生“思辨”的兴趣应当开设的课程是()。
最新回复
(
0
)