首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(X,Y)的分布函数为: F(χ,Y)=A(B+arctan)(C+arctan),-∞<χ,y<+∞ 求:(1)常数A,B,C; (2)(X,Y)的密度; (3)关于X、Y的边缘密度.
设(X,Y)的分布函数为: F(χ,Y)=A(B+arctan)(C+arctan),-∞<χ,y<+∞ 求:(1)常数A,B,C; (2)(X,Y)的密度; (3)关于X、Y的边缘密度.
admin
2020-03-10
93
问题
设(X,Y)的分布函数为:
F(χ,Y)=A(B+arctan
)(C+arctan
),-∞<χ,y<+∞
求:(1)常数A,B,C;
(2)(X,Y)的密度;
(3)关于X、Y的边缘密度.
选项
答案
(1)0=F(-∞,y)=A(B-[*])(C+arctan[*]),[*]y∈R
1
,0=F(χ,-∞)=A(B+arctan[*])(C-[*]),[*]χ∈R
1
,1=F(+∞,+∞)=A(B+[*])(C+[*]). 上边3式联立可解得A=[*],B=C=[*]; (2)(X,Y)的概率密度为 f(χ,y)=[*] (3)关于X的边缘分布函数为F
X
(χ)=F(χ,+∞)=[*],χ∈R
1
, 关于Y的边缘分布函数为F
Y
(y)=F(+∞,y)=[*],y∈R
1
, 故关于X的边缘概率密度为f
X
(χ)=F′
X
(χ)=[*],χ∈R
1
, 关于Y的边缘概率密度为f
Y
(y)=F′
Y
(y)=[*],y∈R
1
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3uD4777K
0
考研数学三
相关试题推荐
设P1=。则必有()
设P1=,则B=()
设向量组α1=(n,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时:(I)β可由α1,α2,α3线性表出,且表示唯一;(Ⅱ)β不可由α1,α2,α3线性表出;(Ⅲ)β可由α1,
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
已知m个向量α1,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其中l1≠0。
函数y=f(x)在(一∞,+∞)连续,其二阶导函数的图形如图1-2-2所示,则y=f(x)的拐点个数是()
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy"(x,y)dxdy。
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。求的关系式
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为__________。
设函数u=f(x,y)具有二阶连续偏导数,且满足等式=0,确定a,b的值,使等式通过变换ξ=x+ay,η=x+by可化简为=0。
随机试题
《饮酒》是一首()
公用设施的服务半径一般确定在()之间。
某供热企业为增值税一般纳税人,2016年2月取得供热收入860万元,其中向居民个人收取120万元(上述收入均含税),当月外购原料取得增值税专用发票注明税额70万元。该企业2016年2月应纳增值税()万元。
在三结合教育中,占主导地位的是()。
【2011.江西】西周六艺教育以()为中心。
确立课程目标的依据有()
当一批受访者被问及他们所持的政治立场时,25%把自己归为保守派,24%把自己归为激进派,51%把自己归为中间派。但当涉及某个具体的政治问题时,77%的受访者所支持的观点被普遍认为代表了激进派的立场。如果上述断定为真,以下哪项一定为真?()
A、 B、 C、 D、 B
这句话越查越搞不清楚意思了,怎么办好呢?
A、Hislastdentist.B、Hismother.C、Asalesman.D、Hisfriend.D事实细节题。对话中男士明确提到自己的一个朋友将DrAllen推荐给自己。
最新回复
(
0
)