首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u,v)具有连续偏导数,且fu(u,v)+fv(u,v)=sin(u+v)eu+v,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(u,v)具有连续偏导数,且fu(u,v)+fv(u,v)=sin(u+v)eu+v,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
admin
2019-07-19
44
问题
设f(u,v)具有连续偏导数,且f
u
(u,v)+f
v
(u,v)=sin(u+v)e
u+v
,求y(x)=e
—2x
f(x,x)所满足的一阶微分方程,并求其通解。
选项
答案
由y(x)=e
—2x
f(x,x),有 y′(x)= —2e
—2x
f(x,x)+e
—2x
[f′
1
(x,x)+f′
2
(x,x)], 由f
u
(u,v)+f
v
(u,v)=sin(u+v)e
u+r
可得 f′
1
(x,x)+f′
2
(x,x)=(sin2x)e
2x
。 于是y(x)满足一阶线性微分方程y′(x)+2y(x)=sin2x,通解为 y(x)=e
—2x
[∫sin2x.e
2x
dx+C], 由分部积分公式,可得 ∫sin2x.e
2x
dx=[*](sin2x—cos2x)e
2x
, 所以 y(x)=[*](sin2x—cos2x)+Ce
—2x
,其中C为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/3yc4777K
0
考研数学一
相关试题推荐
设区域其中常数a>b>0.D1是D在第一象限部分,f(x,y)在D上连续,等式成立的一个充分条件是()
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的属于λ1,λ2的特征向量,则()
累次积分dθ∫0cosθrf(rcos0,rsinθ)dr等于().
求线密度为常数的摆线x=a(t一sint),y=a(1一cost)(0≤t≤π)的重心.
设函数f(x)连续且恒大于零,其中Ωt={(x,y,z)|x2+y2+z2≤t2},Dt={(x,y)|x2+y2≤t2}。(Ⅰ)讨论F(t)在区间(0,+∞)内的单调性;(Ⅱ)证明当t>0时,F(t)>
将函数f(x)=x-1(0≤x≤2)展开成周期为4的余弦级数.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
求八分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的质心,设曲线线密度ρ=1.
求曲线积分I=∫C(x+y)dx+(3x+y)dy+zdz,其中C为闭曲线x=asin2t,y=2acostsint,z=acos2t(0≤t≤π),C的方向按t从0到π的方向.
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
随机试题
关于反竞争性抑制剂的正确阐述是
纵隔疾病首选的影像学检查方法是
某幢写字楼,土堆面积4000m2,总建筑面积为9000m2,建成于1990年10月1日,土地使用权年限为1995年10月1日——2035年10月1日,土地使用权出让合同中未约定到期后不可续期。现在获得类似的40余年土地使用权价格为2000元/m2,建筑物重
有一列500m火车正在运行。若距铁路中心线600m处测得声压级为70dB,距铁路中心线1200m处有居民楼,则该居民楼的声压级是()dB。
()是确定利害关系者对于交流和沟通的要求——谁需要信息,需要什么样的信息,何时需要信息以及应怎样将信息传递到他们手中。
沥青路面检测中除平整度、纵断高程、厚度外,还应检测()。
契约型基金筹集的资金属于()。
以下()策略不是按营销渠道模式分类。
简述幼儿口语表达能力的发展特点。(山西)
AloeVitaminHandCreamArichyetlightweightnon-greasytexturethatactslikeagloveprovidingprotectionagainstharmfu
最新回复
(
0
)