首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 问A能否相似对角化;若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 问A能否相似对角化;若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
admin
2017-07-11
29
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
问A能否相似对角化;若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
选项
答案
对于矩阵B,求方程组(E—B)x=0的基础解系,可得B的属于特征值λ=1的两个线性无关的特征向量η
1
=(一1,1,0)
T
,η
2
=(一2,0,1)
T
. 求方程组(4E—B)x=0的基础解系,可得B的属于特征值λ=4的特征向量η
3
=(0,1,1)
T
. 令P
1
=(η,η,η),则有P
1
一1
BP
1
=[*]从而有 P
1
一1
C
一1
ACP
1
=[*] 即(CP
1
)
一1
A(CP
1
)=[*] 故矩阵A可相似对角化,且相似变换矩阵为 P=CP
1
=(α
1
,α
2
,α
3
)[*]=(一α
1
+α
2
,一2α
1
+α
3
,α
2
+α
3
).
解析
转载请注明原文地址:https://kaotiyun.com/show/4AH4777K
0
考研数学三
相关试题推荐
设函数.其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:Fn(x)在(0,+∞)存在唯一零点x0;
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求正交变换x=Qy化二次型为标准形,并写出所用坐标变换.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)Tα3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,卢可由α1,α2,α3线性表示?并写出此表示式.
函数f(x)=(x-x3)sinπx的可去间断点的个数为
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
向量组α1,α2,…,αm线性无关的充分必要条件是________.
设随机变量X1,X2,…,Xn,…相互独立,,则当n→∞时Yn以正态分布为极限分布,只要X1,…,Xn,…
n为给定的自然数,极限=____________.
设则该幂级数的收敛半径等于_________.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x)fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数Fz(z)与概率密度fZ(z)。
随机试题
A.腺病毒B.柯萨奇病毒A组C.柯萨奇病毒BD.呼吸道合胞病毒E.流感病毒咽-结膜热的病原体是()
食用新鲜蚕豆发生溶血性黄疽的患者缺乏的酶是
女,49岁。上腹部胀满5年,近2个月来食欲不振,全身无力,体检无明显异常发现,X线钡餐未见异常。胃镜活检:炎性细胞浸润及肠上皮化生,未见腺体萎缩。应诊断为
患者,男性,77岁。在输血15分钟后主诉头胀痛、胸闷、腰背剧烈疼痛,随后出现酱油色尿。根据临床表现,该患者可能出现了
我国的工程咨询机构,从其性质和工作范围来看,主要有()。
在职业活动中,践行“合作”规范的具体要求是()。
下列选项中,不属于联合国《儿童权利公约》中确认和保护的儿童权利的是()。(2015年上半年真题)
WhenIwasgrowingupinAmerica,Iwasashamedofmymother’sChineseEnglish.BecauseofherEnglish,shewasoftentreatedun
在现代社会中,虽然以有经济保障和物质享受为前提的婚姻数量迅速减少,但是“金钱决定一切”、“拜金论”仍然在一些人心中根深蒂固。在恋爱婚姻自由的现代社会里,依然存在家长极力干涉子女婚姻的情形,家庭背景、教育背景和工作条件仍然是主要的参考因素。我们不禁思考:金钱
A、She’swordedthatthemanwillmissnextweek’sdeadline.B、Shedoesn’tknowwhenthedeadlinefortuitionpaymentis.C、Them
最新回复
(
0
)