首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. 证明β,Aβ,A2β线性无关;
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. 证明β,Aβ,A2β线性无关;
admin
2021-07-27
63
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
证明β,Aβ,A
2
β线性无关;
选项
答案
设存在一组常数k
1
,k
2
,k
3
,使k
1
β+k
2
Aβ+k
3
A
2
β=0,(*)由题设有Aα
i
=λ
i
α
i
(i=1,2,3),于是Aβ=Aα
1
+Aα
2
+Aα
3
=α
1
α
1
+λ
2
α
2
+λ
3
α
3
,A
2
β=λ
1
2
α
1
+联系
2
α
2
+λ
3
2
α
3
,代入(*)式整理得(k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0.因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有[*]这是一个关于未知数k
1
,k
2
,k
3
的线性方程组,其系数行列式[*]≠0,必有k
1
k
2
k
3
=0,故β,Aβ,A
2
β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Fy4777K
0
考研数学二
相关试题推荐
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是()
已知矩阵A相似于矩阵B=,则秩(A-2E)与秩(A-E)之和等于
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3,线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
向量组α1,α2,…,αs线性无关的充分条件是
设A,B均为n阶实对称矩阵,若A与B合同,则()
设D=是正定矩阵,其中A,B分别是m,n阶矩阵.记P=(1)求PTDP.(2)证明B-CTA-1C正定.
设A是3阶矩阵,交换A的1,2列得B,再把B的第2列加到第3列上,得C.求Q,使得C=AQ.
设f(x)在[a,b]上连续可导,且f(a)=0.证明:
当x>0时,证明:
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
随机试题
一个老人在高速行驶的火车上,不小心把刚买的新鞋从窗口掉了一只,周围的人倍感惋惜,不料老人立即把第二只鞋也从窗口扔了下去。这举动更让人大吃一惊。老人解释说:“这一只鞋无论多么昂贵,对我而言已经没有用了,如果有谁能捡到一双鞋子,说不定他还能穿呢!”这
急性中毒以下哪种情况不宜用硫酸镁导泻
麻疹减毒活疫苗复种的年龄为
当基坑开挖深度不大,地质条件和周围环境允许时,最适宜的开挖方案是()。
根据以下资料,回答116-120题。2007年A省房地产开发投资总量占当年全国的比重为()。
吃糖后接着吃橘子会觉得橘子酸,这是感觉的()。
神经系统最基本的结构和功能单位是()。
新华社
A、 B、 C、 D、 B
A、Theapartmentisbetterfurnished.B、Thewomanpreferstoliveinaquietplace.C、It’slessexpensivetoliveinthenewapar
最新回复
(
0
)