首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. 证明β,Aβ,A2β线性无关;
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. 证明β,Aβ,A2β线性无关;
admin
2021-07-27
88
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
证明β,Aβ,A
2
β线性无关;
选项
答案
设存在一组常数k
1
,k
2
,k
3
,使k
1
β+k
2
Aβ+k
3
A
2
β=0,(*)由题设有Aα
i
=λ
i
α
i
(i=1,2,3),于是Aβ=Aα
1
+Aα
2
+Aα
3
=α
1
α
1
+λ
2
α
2
+λ
3
α
3
,A
2
β=λ
1
2
α
1
+联系
2
α
2
+λ
3
2
α
3
,代入(*)式整理得(k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0.因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有[*]这是一个关于未知数k
1
,k
2
,k
3
的线性方程组,其系数行列式[*]≠0,必有k
1
k
2
k
3
=0,故β,Aβ,A
2
β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Fy4777K
0
考研数学二
相关试题推荐
函数f(χ)在χ=1处可导的充分必要条件是().
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶n为
设非齐次线性方程组Ax=b有两个不同解β1和β2,其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Ax=b的通解为
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设f(x)为连续函数,证明:∫0πxf(sinx)dx=∫0πf(sinx)dx=πf(sinx)dx;
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
在下列微分方程中以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是().
设f(χ)在(-∞,+∞)上连续,F(χ)=∫0χf(t)dt,则下列命题错误的是().
设函数f(x)满足关系式f”(x)+[f’(x)]2=x,且f’(x)=0,则()
随机试题
氧气自动切割的必要条件之一是燃点要高于熔点。()
科斯定律的理论前提是
呼吸衰竭的血气诊断标准是
企业法律顾问的工作原则是()
某高速公路工程全长160km,跨甲、乙两省市,划分为甲1、甲2、甲3和乙1、乙2、五个施工合同段,并相应设置现场监理机构。请按照监理规范的要求选择适当的监理组织形式,画出监理组织结构图,并分析该组织模式的优缺点。
以下不属于员工动态特征的是()。
女性,80岁。慢性咳嗽咳痰20余年,冬季加重。近5年活动后气促。1周前感冒后痰多,气促加剧。近2天嗜睡。血白细胞18.6×109/L,中性粒细胞占90%,动脉血气:pH7.29,PaCO280mmHg,PaO247mmHg,BE-3.5mmol/L引起
二战后世界经济走向统一的过程中,仍然存在着多样性,出现了“两种体系、三种国家”,下列不属于社会主义国家经济类型的是()。
交管局要求司机在通过某特定路段时,在白天也要像晚上一样使用大灯,结果发现这条路上的年事故发生率比从前降低了15%。他们得出结论说:如果在全市范围内都推行该项规定会同样地降低事故发生率。以下哪项如果为真.最能支持上述论证的结论?
在TCP/IP网络中,主机A和主机B通过一路由器互联,提供两主机应用层之间通信的层是(248),提供机器之间通信的层是(249),具有IP层和网络接口层的设备是(250);在A与路由器和路由器与B使用不同物理网络的情况下,主机A和路由器之间传送的数据帧与路
最新回复
(
0
)