设f(x)为连续函数,证明: ∫0πxf(sinx)dx=∫0πf(sinx)dx=πf(sinx)dx;

admin2019-08-12  51

问题 设f(x)为连续函数,证明:
0πxf(sinx)dx=0πf(sinx)dx=πf(sinx)dx;

选项

答案令I=∫0πxf(sinx)dx,则 I=∫0πxf(sinx)dx[*]∫π0(π-t)f(sint)(-dt)=∫0π(π-t)f(sint)dt=∫0π(π-x)f(sinx)dx=π∫0πf(sinx)dx-∫0πxf(sinx)dx=π∫0πf(sinx)dx-I, 则I=∫0πxf(sinx)dx=[*]∫0πf(sinx)dx=π[*]f(sinx)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/5gN4777K
0

最新回复(0)