首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零.记F(x)=证明:F(x)在(a,+∞)内单调增加.
设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零.记F(x)=证明:F(x)在(a,+∞)内单调增加.
admin
2019-02-20
46
问题
设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零.记F(x)=
证明:F(x)在(a,+∞)内单调增加.
选项
答案
证明F’(x)>0(x>a).由题设条件,有 [*] 由拉格朗日中值定理知,存在ξ(a<ξ<x)使得 [*] 于是 [*] 由f"(x)>0,可知f’(x)在(a,+∞)内单调增加.因此,对于任何满足a<ξ<x的x和ξ,有f’(x)>f’(ξ).又x-a>0,从而由②可知F’(x)>0,于是F(x)是单调增加的.
解析
要证F(x)在(a,+∞)内单调增加,只需证F’(x)>0,为此需先求出F’(x).条件“f"(x)在(a,+∞)内存在且大于零”隐含着f’(x)在(a,+∞)上单调上升,因此要充分利用这一信息来证明F’(x)>0.
转载请注明原文地址:https://kaotiyun.com/show/4TP4777K
0
考研数学三
相关试题推荐
设随机变量X服从正态分布N(μ2,σ2),其分布函数为F(x),则有()
向量组α1,α2,…,αs线性无关的充分必要条件是
设a>0为常数,则()
函数y=ln(1-2x)在x=0处的n阶导数y(n)(0)=______.
假设随机变量X1,X2,X3,X4相互独立且都服从0一1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于则p=______.
设φ(x)=,又f(x)在点x=0处可导,求F(x)=f[φ(x)]的导数.
设闭区域D={(x,y)|x2+y2≤y,x≥0},又f(x,y)为D上的连续函数,且求f(x,y).
设u=f(x,y,z)有连续的偏导数,又函数y=y(x)及z=z(x)分别由exy—xy=4和ez=.
已知n阶矩阵A的每行元素之和为a,当k是自然数时,求Ak的每行元素之和.
随机试题
Afterstudyinginamedicalcollegeforfiveyears,Jane______herjobasadoctorinthecountryside.
对于服药时间,峻下逐水药的服用时间是
计时观察法最主要的三种方法是()。【2004年真题】
企业发生的停工损失属于自然灾害原因造成的,应将实际发生的停工损失记入“营业外支出”科目中。()
销售保单利益确定的保险产品,存在特定情况的,应在取得投保人签名确认的投保声明后方可承保。()
韦氏智力量表V—P差异没有实际意义可见于言语能力对操作能力缺陷的补偿,因为()是两个常常受言语能力影响的操作测验。
A、 B、 C、 D、 C分母2、4、8、16、(32)、64是公比为2的等比数列,分子1、3、7、15、(31)、63是其相对应的分母减1,故所求项为,选C。
连续型随机变量χ的概率密度为,则方差D(X)为()。
陪同口译
人身权利是指公民的人身不受非法侵犯的权利,包括生命健康权、人身自由权、人格尊严权、住宅安全权、通信自由权等具体权利。人最基本、最原始的权利,享有其他各项权利的前提是()
最新回复
(
0
)