首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组=0有非零解,而且矩阵A=是正定矩阵. (1)求常数a的值; (2)求当XTX=2时,XTAX的最大值,其中X=(χ1,χ2,χ3)T为3维实向量.
已知线性方程组=0有非零解,而且矩阵A=是正定矩阵. (1)求常数a的值; (2)求当XTX=2时,XTAX的最大值,其中X=(χ1,χ2,χ3)T为3维实向量.
admin
2017-06-26
57
问题
已知线性方程组
=0有非零解,而且矩阵A=
是正定矩阵.
(1)求常数a的值;
(2)求当X
T
X=2时,X
T
AX的最大值,其中X=(χ
1
,χ
2
,χ
3
)
T
为3维实向量.
选项
答案
(1)由方程组的系数行列式△=a(a+1)(a-3)=0,[*]a的取值范围为:0,-1,3,再由矩阵A正定,得a=3. (2)A的最大特征值为10,设对应的单位特征向量为ξ(即Aξ=10ξ,且ξ
T
ξ=1).对二次型X
T
AX,存在正交变换X=PY化其为标准形:X
T
AX=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
≤10(y
1
2
+y
2
2
+y
3
2
),当X
T
X=Y
T
Y=y
1
2
+y
2
2
+y
3
2
=2时,有X
T
AX≤10×2=20,又X
0
=[*]ξ满足X
0
T
X
0
=2,则X
0
T
AX
0
=[*]=2ξ
T
(Aξ)=2ξ
T
(10ξ)=20(ξ
T
ξ)=20,综上可知[*]X
T
AX=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/4VH4777K
0
考研数学三
相关试题推荐
函数y=C1ex+C22e-2x+xex满足的一个微分方程是().
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
设函数f(x)在[0,1]上连续,(0,1)内可导,且3∫2/31f(x)dx=f(x),证明在(0,1)内存在一点,使f’(C)=0.
设随机变量X服从于参数为(2,p)的二项分布,随机变量y服从于参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}=__________.
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求正交变换x=Qy化二次型为标准形,并写出所用坐标变换.
利用曲线积分计算柱面x2/5+y2=1位于y≥0,z≥0的部分被平面y=z所截一块的面积.
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
设总体X服从标准正态分布,(X1,X2,…,Xn)为总体的简单样本,,则().
随机试题
安静时,细胞内、外正常Na+和K+浓度差的维持是由于()
选择一种可以明确区分以下同分异构体的波谱分析方法,并简要说明理由。
中枢兴奋药过量最严重的反应是
A.基牙继发龋B.牙周咬合创伤C.牙本质敏感D.邻接点恢复不良E.早接触固定桥使用后出现食物嵌塞,最可能的原因是
真空管道进行气压试验时,其试验压力应为()。
某年全国最终消费54617亿元,资本形成总额32255亿元,货物和服务净出口2240亿元,合计为89112亿元,这是根据( )计算的国内生产总值。
中小型企业一般设()。
材料:王老师在讲《雨巷》这一课时,叫了几个学生起来朗诵这首诗。平时就对诗朗诵很感兴趣的小蕾举手示意,非常希望能在同学们面前朗诵。然而王老师却对她说:“你还是先把你的学习搞好吧,上次考试就没及格!”小蕾脸涨得通红,欲言又止。班里的气氛也一下子紧张了起来。
只有迎着群众需求上,贴着群众认可改,瞄准群众满意干,才能体现改革的温度和力度。这句活蕴含的哲理是()。
Donottrustsuchmen______oftenliketopraiseyoutoyourface.
最新回复
(
0
)