首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. (I)证明向量组β1,β2,β3为R3的一个基; (Ⅱ)当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的
设向量组α1,α2,α3为R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. (I)证明向量组β1,β2,β3为R3的一个基; (Ⅱ)当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的
admin
2018-04-15
29
问题
设向量组α
1
,α
2
,α
3
为R
3
的一个基,β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
(I)证明向量组β
1
,β
2
,β
3
为R
3
的一个基;
(Ⅱ)当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求所有的ξ.
选项
答案
将已知的线性表示式写成矩阵形式,得 (β
1
,β
2
,β
3
)=(2α
1
+2α
3
,2α
2
,α
1
+(k+1)α
3
)=(α
1
,α
2
,α
3
)P其中矩阵P=[*],由于P的行列式|P|≠0,所以P可逆,故向量组β
1
,β
2
,β
3
(线性无关)可作为R
3
的基. (Ⅱ)解 设非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标(列)向量为x,则 ξ=(α
1
,α
2
,α
3
)x=(β
1
,β
2
,β
3
)X=(α
1
,α
2
,α
3
)Px 由此得(α
1
,α
2
,α
3
)Px一(α
1
,α
2
,α
3
)x=(α
1
,α
2
,α
3
)(Px一x)=(α
1
,α
2
,α
3
)(P—E)x=0 因为矩阵(α
1
,α
2
,α
3
)可逆,所以(P—E)x=0,其中E为3阶单位矩阵,因为x≠0,所以P—E是降秩矩阵,对P—E施行初等行变换: [*] 可见,当且仅当k=0时方程组(P—E)x=0有非零解,且所有非零解为 x=[*],c为任意非零常数 故在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同的所有非零向量为 ξ=(α
1
,α
2
,α
3
)[*]=c(a
1
一a
s
),c为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/4ar4777K
0
考研数学一
相关试题推荐
设随机变量X,Y相互独立,且分别服从参数为λ和μ的指数分布(μ,λ)(μ>0,λ>0),则P(X>Y)等于()。
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0。求A的特征值、特征向量。
微分方程y"-y’=ex+1的一个特解具有的形式为()。
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)常数k的值;(Ⅱ)(X,Y)的边缘密度fX(x)和fY(y);(Ⅲ)条件密度fX|Y(y|x)和fX|Y(x|y);(Ⅳ)P{X+Y≤1}的值。
设Ω是由曲面及z=1所围成的区域f(x,y,z)连续,则
设物体在高空中垂直下落,初速度为零,下落过程中所受空气阻力与下落速度的平方成正比,阻力系数k>0。证明下落速度不会超过
设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记S1=a2n—1,求S1与S2的值.
设x→0时ax2+bx+c—cosx是比x2高阶无穷小,其中a,b,c为常数,则()
下列命题中正确的个数是()①若u1+(u2+u3)+(u4+u5+u6)+…发散,则发散;
设总体X服从正态分布N(0,σ2),X1,X2,…,Xn是取自总体X的简单随机样本,其均值、方差分别为,S2.则()
随机试题
简述定期租船合同的特点。
教师比较合理的知识结构应包括()、()和()三个方面。
Howmenfirstlearnedtoinventwordsisunknown:inotherwords,theoriginoflanguageisamystery.Allwereallyknowistha
影响X线物质吸收衰减的因素中,错误的是
外感实热病证,兼见喘咳,气不能接续,甚则心悸气短,病机为
货物与工程的最大区别在于它的()。
注册商标的有效期为10年,其计算起始日为()。
我国经济从1953年到2004年经历的9个完整的经济周期中,波长最短的周期是( )。
A、10B、8C、15D、1D(17-4)×2+32=35,(28-26)×5+52=35,所以问号处应为,故选D。
CanMixofTeachers,ComputersLeadtoPupilSuccess?[A]WhenvisitorstotheCarpeDiemcharterschoolsee175studentswearin
最新回复
(
0
)