首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续可导,证明:∫abf(x)dx|+∫ab|f’(x)|dx.
设f(x)在[a,b]上连续可导,证明:∫abf(x)dx|+∫ab|f’(x)|dx.
admin
2016-10-24
47
问题
设f(x)在[a,b]上连续可导,证明:
∫
a
b
f(x)dx|+∫
a
b
|f’(x)|dx.
选项
答案
因为f(x)在[a,b]上连续,所以|f(x)|在[a,b]上连续,令|f(c)|=[*] 根据积分中值定理, [*] ∫
a
b
f(x)dx=f(ξ),其中ξ∈[a,b]. 由积分基本定理,f(c)=f(ξ)+∫
ξ
c
f’(x)dx,取绝对值得 |f(c)|≤|f(ξ)|+|∫
ξ
c
f’(x)dx|≤|f(ξ)|+∫
a
b
|f’(x)|dx,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4dT4777K
0
考研数学三
相关试题推荐
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).(1)写出所有可能结果构成的样本空间Ω;(2)事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
利用函数的凹凸性,证明下列不等式:
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:exy-xy=2和
设函数f(u)在(0,∞)内具有二阶导数,且
设F(x)=F(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x)且f(0)=0,f(x)+g(x)=2ex.求F(x)所满足的一阶微分方程;
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设F(x)=F(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x)且f(0)=0,f(x)+g(x)=2ex.求F(x)所满足的一阶微分方程;
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
随机试题
微生态制剂主要用于的腹泻类型包括()。
2011年7月23日,海淀区赵某在丰台区北京市某房屋中介公司的介绍下,与西城区钱某签订了房屋租赁合同,由赵某租赁位于丰台某地门面房80平方米,双方签订了房屋租赁合同,约定租赁期是2年,月租金8000元,季付。合同签订后,赵某向钱某支付了首次房租32000元
下列焊接方法中,焊接飞溅最大的焊接方法是()。
对在印花税应税凭证上未贴或少贴印花税票的,除补贴印花税票外,税务机关可处应补贴税票金额的( )的罚款。
荷兰伊拉斯漠斯大学医学中心的研究人员在对1.8万人进行调查并研究后发现,如果体内“CYPIA1”和“NRCAM”这两种基因表现活跃,人就会爱喝咖啡,而且不太容易出现大量摄入咖啡因后的不良感觉。因此,爱喝咖啡可能与基因有关。下列各项如果为真,最能支持题干观点
根据我国法律规定,下列财产中可以适用善意取得的是()。
A.条件(1)充分,但条件(2)不充分.B.条件(2)充分,但条件(1)不充分.C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和条件(2)单独都不充分,条件(1)和
为表中一些字段创建普通索引的目的是
23rdAnnualStateFairAtFloridaStateFairgroundsIncelebrationoftheextraordinarysightsandsoundsoftheFair,"Nowhere
A、Hethinksit’smainlyforchildren.B、Hefeelsitwouldbeworthwhile.C、Hebelievesitistoocomplicated.D、Hethinksitmay
最新回复
(
0
)