首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×s矩阵,证明r(AB)≤r(B).
设A是m×n矩阵,B是n×s矩阵,证明r(AB)≤r(B).
admin
2016-10-20
35
问题
设A是m×n矩阵,B是n×s矩阵,证明r(AB)≤r(B).
选项
答案
(1)设AB=C,C是m×s矩阵,对B,C均按行分块,记为 [*] 用分块矩阵乘法,得 [*] 即向量组β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
n
线性表出,那么由定理有 r(AB)=r(C)=r(β
1
,β
2
,…,β
m
)≤r(α
1
,α
2
,…,α
n
)=r(B). (2)构造两个齐次线性方程组 ABx=0 ①; Bx=0 ②, 其中X=(x
1
,x
2
,…,x
s
)
T
. 由于方程组②的解必是方程组①的解,因此r(②的解向量)≤r(①的解向量). 即s-r(B)≤s-r(AB),从而r(AB)≤r(B). (3)设r(B)=r,化B为等价标准形即有可逆矩阵P,Q,使 [*] 对m×n矩阵AP
-1
分块为(C
1
,C
2
),其中C
1
是m×r矩阵,C
2
是m×(n-r)矩阵,则有 [*] 那么 r(AB)=r(ABQ)=r(C
1
,0)=r(C
1
). 因为C
1
是m×r矩阵,故r(C
1
)≤r=r(B).所以r(AB)≤r(B).
解析
转载请注明原文地址:https://kaotiyun.com/show/4eT4777K
0
考研数学三
相关试题推荐
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
证明[*]
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
本题考察有趣的雪花曲线.雪花曲线是这样作出来的:以边长为1的等边三角形作为基础,第一步:将每边三等分,以每边的中间一段为底各向外作一个小的等边三角形,随后把这三个小等边三角形的底边删除.第二步:在第一步得出的多边形的每条边上重复第一步,如此无限地继续下去,
求一曲线的方程,这曲线过原点,并且它在点(x,y)处的切线斜率等于2x+y。
求下列曲线在指定点处的曲率及曲率半径:(1)椭圆2x2+y2=1在点(0,1)处;(2)抛物线y=x2-4x+3在顶点处;(3)悬链线y=acoshx/a(a>0),在点(x。,y。)处;(4)摆线在对应t=π/2的点处;(5)阿基米德螺线ρ=a
证明函数恒等式,arctanx=x∈(一1,1).
随机试题
A.Na+B.K+C.HCO3-D.Ca2+E.Cl-神经细胞膜在静息时通透性最大的离子是
日本药品和药事监督管理层次分为中央级、都道府县级和市町村级三级。权力集中于中央政府厚生省药务局,地方政府为贯彻执行部门。()
当上市公司发行在外的普通股股数和实现的净利润一定时,下列各项中,影响市盈率的是()。
2013年8月5日,甲基金会取得一项捐款100万元,捐赠人限定将该款项用于购置化疗设备。2014年1月15日,甲基金会购入设备,价值80万元。2014年2月20日,经与捐赠人协商,捐赠人同意将剩余的款项20万元留归甲基金会自主使用。甲基金会下列处理中正确的
清初“四王”中,取得“熟不甜,生不涩,淡而厚,实而清”的收获的画家是()。
你所在辖区内的一家房地产开发商和业主因为交房和合同上不一致发生冲突,要你去处理,请问你会如何处理?
Inrecentyearsmanycountriesoftheworldhavebeenfacedwiththeproblemofhowtomaketheirworkersmoreproductive.Some
4/π
下列描述中正确的是
Itwasreally_____ofyoutoremembermybirthday.(2011-73)
最新回复
(
0
)