首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(x)在[0,2]上可导,且|f’(x)|≤M,又f(x)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M. (2)设f(x)在[a,b]上二阶可导,|f"(x)|≤M,又f(x)在(a,b)内能取到最小值,证明:|f
(1)设f(x)在[0,2]上可导,且|f’(x)|≤M,又f(x)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M. (2)设f(x)在[a,b]上二阶可导,|f"(x)|≤M,又f(x)在(a,b)内能取到最小值,证明:|f
admin
2019-08-23
83
问题
(1)设f(x)在[0,2]上可导,且|f’(x)|≤M,又f(x)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M.
(2)设f(x)在[a,b]上二阶可导,|f"(x)|≤M,又f(x)在(a,b)内能取到最小值,证明:|f’(a)|+|f’(b)|≤M(b-a).
选项
答案
(1)由题意,存在c∈(0,2),使得f(c)=0, 由拉格朗日中值定理,存在ξ
1
∈(0,c),ξ
2
∈(c,2)使得 f(c)一f(0)=f’(ξ
1
)c, f(2)一f(c)=f’(ξ
2
)(2一c), 于是|f(0)|=|f’(ξ
1
)|c≤Mc,|f(2)|=|f’(ξ
2
)|(2一c)≤M(2一c), 故|f(0)|+|f(2)|≤2M. (2)由题意,存在c∈(a,b),使得f(c)为最小值,从而f’(c)=0,由拉格朗日中值定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 f’(c)一f’(a)=f"(ξ
1
)(c一a), f’(b)一f’(c)=f"(ξ
2
)(b一c), 于是|f’(a)|=f"(ξ
1
)|(c一a)≤M(c一a), |f’(b)|=|f"(ξ
2
)|(b一c)≤M(b—c), 故|f’(a)|+|f’(b)|≤M(b-a).
解析
转载请注明原文地址:https://kaotiyun.com/show/4ic4777K
0
考研数学一
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。计算并化简PQ。
设随机变量X和Y的联合概率分布如下表所示则X2和Y2的协方差Cov(X2,Y2)=_________。
设函数f(x)连续且恒大于零,其中Ωt={(x,y,z)|x2+y2+z2≤t2},Dt={(x,y)|x2+y2≤t2}。讨论F(t)在区间(0,+∞)内的单调性。
已知曲线L:y=x2=________。
设有平面闭区域,D={(x,y)|—a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则=()
如图1-3-2所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f″′(x)dx。
已知积分与路径无关,f(x)可微,且。对第一问中求得的f(x),求函数u=u(x,y)使得。
设(x-3sin3x+ax-2+b)=0,求a,b的值.
随机试题
阅读韩愈《张中丞传后叙》中的一段文字,然后回答以下小题。说者又谓远与巡分城而守,城之陷,自远所分始。以此诟远,此又与儿童之见无异。人之将死,其脏腑必有先受其病者;引绳而绝之,其绝必有处。观者见其然,从而尤之,其亦不达于理矣。这段文字所驳斥的谬
咯血
消风散具有的治疗作用是()定痫丸具有的治疗作用是()
正常舌象应具有的特点是
场景某电气装置安装工程项目。该工程项目包括:室外线路安装、室内线路安装、室内电缆安装以及硬母线安装等。该工程项目由某电力建筑安装工程公司承担施工任务。在施工过程中,当进行室外电缆敷设时,发现埋设的电缆深度不够,且有些部位应该有固定点埋件但没有。在试通电时
铝试剂的结构简式如下图所示。下列有关铝试剂的说法错误的是()。
(91年)求极限,其中n为给定的自然数.
给出的关系PD是第几范式?将它分解为高一级范式,分解后的关系能否解决操作异常的问题?
电子邮件应用程序从邮件服务器的邮箱中读取邮件可使用的协议包括()。
Everybodysleeps,butwhatpeoplestayuplatetocatch—orwakeupearlyinordernottomiss—variesbyculture.Fromdata
最新回复
(
0
)