设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z). 求:(Ⅰ)Z的概率密度fZ(z); (Ⅱ)F(2,-1)的值.

admin2018-11-23  71

问题 设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z).
    求:(Ⅰ)Z的概率密度fZ(z);
    (Ⅱ)F(2,-1)的值.

选项

答案(Ⅰ)FZ(z)=[*]P{-Y≤z}+[*]P{Y≤z}=[*]P{Y≥z}+[*]P{Y≤z} [*][1-P{Y<-z}]+[*]P{y≤z}=[*][1-P{y≤-z}+P{Y≤z}] =[*][1-FY(-z)+FY(z)]. 于是fZ(z)=F′Z(z)=[*][fY(-z)+fY(z)]=[*]e-|z|,-∞<z<+∞. (Ⅱ)F(2,-1)=P{Y≤2,Z≤-1}=P{Y≤2,(2X-1)Y≤-1} =P{X=0}P{Y≤2,(2X-1)Y≤-1|X=0}+ P{X==1}P{Y≤2,(2X-1)Y≤-1|X=1} =[*]P{Y≤2,-Y≤-1|X=0}+[*]P{Y≤2,Y≤-1|X=1} =[*]P{Y≤2,-Y≤-1}+[*]P{Y≤2,Y≤-1} =[*]P{1≤Y≤2}+[*]P{Y≤-1}=[*]P{1≤Y≤2}=[*](e-1-e-2).

解析
转载请注明原文地址:https://kaotiyun.com/show/4nM4777K
0

最新回复(0)