首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在(a,b)内可导,并且f(x)g’(x)一f’(x)≠0,试证:在(a,b)内至多存在一点ξ,使得f(ξ)=0.
设f(x),g(x)在(a,b)内可导,并且f(x)g’(x)一f’(x)≠0,试证:在(a,b)内至多存在一点ξ,使得f(ξ)=0.
admin
2017-07-26
74
问题
设f(x),g(x)在(a,b)内可导,并且f(x)g’(x)一f’(x)≠0,试证:在(a,b)内至多存在一点ξ,使得f(ξ)=0.
选项
答案
由已知条件f(x)g’(x)一f’(x)≠0,可知f’(x)一f(x)g’(x)≠0,即 作辅助函数F(x)=f(x)e
—g(x)
,则F(x)在[x
1
,x
2
]上满足洛尔定理的全部条件,由洛尔定理,在(x
1
,x
2
)[*](a,b)内至少存在一点ξ,使 F’(ξ)=e
—g(ξ)
[f’(ξ)一f(ξ)g’(ξ)]=0, 这与已知条件f(x)g’(x)一f’(x)≠0,x∈(a,b)矛盾, 故f(x)在(a,b)内至多存在一个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/4uH4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的各列元素之和为2且|A|=4,则它的伴随矩阵A的各列元素之和为_____.
玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1和0.1.顾客欲购一箱玻璃杯,在购买时售货员随意取一箱,而顾客随机察看该箱中4只玻璃杯,若无残次品,则买下该箱玻璃杯,否则退回.试求:(1)顾客买下该箱的概率α;
设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α11,α2,α3),求P-1AP.
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
设A是m×n阶矩阵,下列命题正确的是().
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)出,试证:f(x)=0(-∞<x<+∞).
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
A.多潘立酮B.米索前列醇C.奥美拉唑D.硫酸镁E.酚酞
2018年,甲房地产开发企业(以下简称甲企业)开发某商品住宅小区项目。2019年,甲企业欲通过乙信托公司(以下简称乙公司)筹集开发项目所需资金。乙公司分析了该项目所在城市的房屋建设状况、销售情况等房地产市场状况及甲企业的经营状况,制定了投资额度安排。202
【背景资料】某办公大楼由主楼和裙楼两部分组成。平面呈不规则四方形,主楼29层,裙楼4层,地下2层,总建筑面积81650m2。该工程5月份完成主体施工,屋面防水施工安排在8月份。屋面防水层由一层聚氨酯防水涂料和一层自粘SBS高分子防水卷材构成。裙楼
德尔塔-正态分布法中的市场价格的变化不是来自历史观察值,而是通过随机数模拟得到。()
微博的“微言大义”、微信的“造微人妙”、微公益的“积微成著”,中国的2014和“微”字如影随形。我们在微平台上_______,凝聚真相,传递共识。填入划横线部分最恰当的一项是()。
安德森的心理技能形成三阶段论的第一个阶段是()
汉代海上对外交通的港口位于我国东南沿海。当时,()是两汉王朝与东南亚、印度的海上通道。
按照马斯洛的需要层次理论,王维的《九月九日忆山东兄弟》主要体现了下列哪种需要()
虚拟企业是当市场出现新机遇时,具有不同资源与优势的企业为了共同开拓市场,共同对付其他的竞争者而组织的,建立在信息网络基础上的共享技术与信息、分担费用、联合开发的、互利的企业联盟体。根据上述定义,下列属于虚拟企业的是:
以下程序段是函数返回a所指数组中最大的值所在的下标值,横线处的语句为()。fun(int*a,intn){inti,j=0,k;k=j;for(i=j;ia[k])——;return(k);
最新回复
(
0
)