首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为 (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为 (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
admin
2019-05-11
67
问题
设四元齐次线性方程组(I)为
又已知某齐次线性方程组(Ⅱ)的通解为
(1)求线性方程组(I)的基础解系;
(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)线性方程组(I)的解为[*],得所求基础解系 ξ
1
=[0,0,1,0]
T
,ξ
2
=[一1,1,0,1]
T
. (2)将方程组(Ⅱ)的通解代入方程组(I),得[*],即k
1
=一k
2
.当k
1
=一k
2
≠0时,方程组(I)和(II)有非零公共解,且为 x=一k
2
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
=k
2
[一1,1,1,1]
T
=k[一1,1,1,1]
T
,其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/4wV4777K
0
考研数学二
相关试题推荐
设A,B为n阶矩阵,(1)求P.Q;(2)证明:当P可逆时,Q也可逆.
设u=f(z),其中z是由z=y+χφ(χ)确定的χ,y的函数,其中f(z)与φ(z)为可微函数.证明:
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为设β=,求Aβ.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
已知矩阵A=有两个线性无关的特征向量,则a=________.
设抛物线y=ax2+bx+c过点(0,0)及(1,2),其中a<0,确定a,b,c,使抛物线与x轴所围成的面积最小.
设f(x)=∫-1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A的其他特征值与特征向量;
计算行列式
随机试题
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和条件(2)单独都不充分,条件(1)和
Intheseventeenthcentury,EuropeansoldierswhocameacrosssomeIndiangroupsinthewesternGreatLakesfoundthatseveraln
病毒性肝炎浸润的细胞主要是
房地产市场分析报告大纲中的供给分析不包括的内容选项是()。
M公司赊销商品给N公司,价税总计为117万元,双方约定一个月后付款,但由于N公司经营困难,无法足额偿付欠款,于是进行债务重组,重组协议规定:首先豁免10%的欠款,由N公司以库存商品按公允价值抵偿部分债务,该库存商品账面成本为40万元,公允价为50万元,增
市场对于资源配置具有灵活而有效的导向作用,因而能保证社会生产各部门的持续协调发展和经济的稳定增长。()
下列各项属于随从工作的特点的是()。
注意的特点主要有【】
Itisnowclearthatnosuchcreaturesasvampireshavebeenseenandnonebeenfoundintheworld.
ThecountriesthathavelefttheUnitedStatesbehindinmathandscienceeducationhaveonethingincommon:Theyofferthesam
最新回复
(
0
)