首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求一个正交变换化下列二次型成标准形: f=2x12+322+3x22+4x2x3.
求一个正交变换化下列二次型成标准形: f=2x12+322+3x22+4x2x3.
admin
2020-11-13
63
问题
求一个正交变换化下列二次型成标准形:
f=2x
1
2
+3
2
2
+3x
2
2
+4x
2
x
3
.
选项
答案
f的矩阵A=[*],|λE-A|=[*]=(λ一2)(λ一5)(λ一1), 解得A的特征值为λ
1
=2,λ
2
=5,λ
3
=1. ①当λ
1
=2时,解方程组(2E—A)x=0,得基础解系为α
1
=(1,0,0)
T
; ②当λ
2
=5时,解方程组(5E—A)x=0,得基础解系为α
2
=(0,1,1)
T
; ③当λ
3
=1时,解方程组(E一A)x=0,得基础解系为α
3
=(0,1,一1)
T
. 最后将α
1
,α
2
,α
3
单位化得β
1
=(1,0,0)
T
,β
2
=[*] 因此所求正交变换为[*] 因此f的标准形为f=2y
1
2
+5y
2
2
+y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/4xx4777K
0
考研数学三
相关试题推荐
设n(n≥2)阶矩阵A非奇异,A*是矩阵A的伴随矩阵,则().
[*]
[2004年]设f(x)在区间(一∞,+∞)内有定义,且则().
设A是3阶矩阵,将A的第2行加到第1行上得曰,将B的第1列的一1倍加到第2列上得C.则C=().
设三阶矩阵A的特征值是0,1,一l,则下列选项中不正确的是()
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
设二维正态随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X一Y,不相关的充分必要条件为()
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设有n元实二次型f(x1,x2,…,xn)=(x1+α1x2)2+(x2+x2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
已知是矩阵的一个特征向量.问A能否相似于对角矩阵?并说明理由.
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)