首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为同阶可逆矩阵,则( ).
设A,B为同阶可逆矩阵,则( ).
admin
2019-03-22
46
问题
设A,B为同阶可逆矩阵,则( ).
选项
A、AB=BA
B、存在可逆矩阵P,使P
-1
AP=B
C、存在可逆矩阵C,使C
T
AC=B
D、存在可逆矩阵P和Q,使PAQ=B
答案
D
解析
解一 因A,B为同阶可逆矩阵,故其秩相等,因而A与B等价,再由命题2.2.5.3(4)知,存在可逆矩阵P和Q,使PAQ=B,故仅(D)入选.
解二 因方阵A可逆,则A与同阶单位矩阵E等价(见命题2.2.5.5(1)),则存在可逆矩阵P,使PA=E.同理,由于B可逆,故存在可逆矩阵M,使BM=E(见命题2.2.5.5(3)),故PA=E=BM,因而.PALM
-1
=B.令M
-1
=Q,则P,Q可逆,使PAQ=B,于是选项(D)正确.
解三 A,B为同阶可逆矩阵,则由解一知,它们都等价于同阶单位矩阵.由等价的传递性和对称性知,(D)成立.但因A,B等价,其特征值可以不一样,因而未必相似,故(B)不成立.另外,两个可逆矩阵所对应的二次型的正、负惯性指数可以不同,因此它们也未必合同,故(C)也不对.因为A,B等价,即A与B等秩,这只是A,B相似的必要条件,但非充分条件.同样也只是A与B合同的必要条件,但非充分条件.因矩阵乘法不满足交换律,故(A)也不成立.
解四 因A,B为同阶可逆矩阵,故A,B的秩相等,则A与B等价.因而A可以通过有限次初等行或列变换为B,而这些初等行或列变换对应的初等矩阵的乘积分别用P与Q表示,则P,Q可逆,且使PAQ=B.仅(D)入选.
注:命题2.2.5.3 设A,B为m×n阶矩阵,下述条件之一为A与B等价的充要条件.(4)存在两个可逆矩阵P与Q,使B=PAQ.
命题2.2.5.5 (1)方阵A可逆的充要条件是A与单位矩阵等价.(3)方阵A可逆的充要条件是存在可逆矩阵P,使PA-E,或存在可逆矩阵Q,使AQ-E.
转载请注明原文地址:https://kaotiyun.com/show/jYP4777K
0
考研数学三
相关试题推荐
设函数u=f(x,y)具有二阶连续偏导数,且满足等式,确定a,b的值,使等式通过变换ξ=x+ay,η=x+by可化简为=0。
[*]
1利用等价无穷小量替换将极限式进行化简,即
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,—α2),则P—1AP=()
设函数f(x)在x=1的某邻域内连续,且有
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
直角坐标中的累次积分I=f(x,y)dy化为极坐标先r后θ次序的累次积分I=___________.
设则A-1=_______.
随机试题
下列不属于构成人体必需氨基酸的有()。
下列关于缴纳专利费用的说法正确的是?
患者,女,32岁。近2年来梳头时易脱发,经常反复口腔、鼻腔溃疡,四肢关节肿痛,2年来冬季遇冷时手指苍白疼痛继之发紫,后恢复正常。询问病史得知,夏天患者受阳光照射后面部易患红斑,怀疑是SLE。可确诊的检查结果是
下列对预防医学认识的描述,错误的是
A.乳牙滞留B.牙齿迟萌C.乳牙早萌D.乳牙早脱落E.牙齿固连邻牙倾斜,间隙变小,恒牙不能萌出是由于
依照《民用爆炸物品管理条例》的规定,()在生产车间或者仓库内试验或者爆破器材。
教师备课需要做好三项工作,主要是指()。
Becauseofitspotentialforcuttingcosts,thedistributionstepinthemarketingprocessisreceivingmoreattention.Distribu
TalesFromAnimalHospitalDavidGrantDavidGranthasbecomeafamiliarfacetomillionsoffansofAnimalHospital.He
Sinceitistoolatetochangemymindnow,Iam______tocarryingouttheplan.
最新回复
(
0
)