首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为同阶可逆矩阵,则( ).
设A,B为同阶可逆矩阵,则( ).
admin
2019-03-22
91
问题
设A,B为同阶可逆矩阵,则( ).
选项
A、AB=BA
B、存在可逆矩阵P,使P
-1
AP=B
C、存在可逆矩阵C,使C
T
AC=B
D、存在可逆矩阵P和Q,使PAQ=B
答案
D
解析
解一 因A,B为同阶可逆矩阵,故其秩相等,因而A与B等价,再由命题2.2.5.3(4)知,存在可逆矩阵P和Q,使PAQ=B,故仅(D)入选.
解二 因方阵A可逆,则A与同阶单位矩阵E等价(见命题2.2.5.5(1)),则存在可逆矩阵P,使PA=E.同理,由于B可逆,故存在可逆矩阵M,使BM=E(见命题2.2.5.5(3)),故PA=E=BM,因而.PALM
-1
=B.令M
-1
=Q,则P,Q可逆,使PAQ=B,于是选项(D)正确.
解三 A,B为同阶可逆矩阵,则由解一知,它们都等价于同阶单位矩阵.由等价的传递性和对称性知,(D)成立.但因A,B等价,其特征值可以不一样,因而未必相似,故(B)不成立.另外,两个可逆矩阵所对应的二次型的正、负惯性指数可以不同,因此它们也未必合同,故(C)也不对.因为A,B等价,即A与B等秩,这只是A,B相似的必要条件,但非充分条件.同样也只是A与B合同的必要条件,但非充分条件.因矩阵乘法不满足交换律,故(A)也不成立.
解四 因A,B为同阶可逆矩阵,故A,B的秩相等,则A与B等价.因而A可以通过有限次初等行或列变换为B,而这些初等行或列变换对应的初等矩阵的乘积分别用P与Q表示,则P,Q可逆,且使PAQ=B.仅(D)入选.
注:命题2.2.5.3 设A,B为m×n阶矩阵,下述条件之一为A与B等价的充要条件.(4)存在两个可逆矩阵P与Q,使B=PAQ.
命题2.2.5.5 (1)方阵A可逆的充要条件是A与单位矩阵等价.(3)方阵A可逆的充要条件是存在可逆矩阵P,使PA-E,或存在可逆矩阵Q,使AQ-E.
转载请注明原文地址:https://kaotiyun.com/show/jYP4777K
0
考研数学三
相关试题推荐
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设奇函数f(x)在[—1,1]上具有二阶导数,且f(1)=1,证明:(Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(—1,1),使得f"(η)+f’(η)=1。
设f(x)在(一∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则()
已知A为三阶方阵,A2一A一2E=0,且0<|A|<5,则|A+2E|=________。
设某商品的需求函数为Q=100—5P,其中价格P∈(0,20),Q为需求量。(Ⅰ)求需求量对价格的弹性Ed(Ed>0);(Ⅱ)推导=Q(1—Ed)(其中R为收益),并用弹性Ed说明价格在何范围内变化时,降低价格反而使收益增加。
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
将函数f(x)=展开成x一1的幂级数,并指出其收敛区间。
设f(x)二阶连续可导,且f(0)=f’(0)=0,f’’(0)≠0,设u(x)为曲线y=f(x)在点(x,f(x))处的切线在x轴上的截距,求.
设则x=0是f(x)的().
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
随机试题
WhatDoesaCreditCardBringUs?[A]"Chargeit!"Ifthosetwowordssoundfamiliar,itisnowonder.Over75millionAmer
电击对人体的效应是通过的电流决定的。 ()
Therewasanasty(肮脏的,卑鄙的)accidentinourtownnotlongago,andIsawithappen.Iwasstandingneararoadwhichwasunderr
根据马斯洛的理论对人类基本需要各层次间关系的理解正确的是
下列情形中,哪项行为构成偷税罪?
物流中心级信息平台是物流园区级信息平台的一个子集。()
教育心理学是_____的一种,是心理学与教育学的交叉学科。
Theteacherdividedthestudentsintosmallgroups___________ability.
浏览器/服务器架构是现阶段非常流行的数据库应用系统架构。在此架构中,应用服务器起到了非常重要的作用。下列关于应用服务器的说法,错误的是()。
Lookatthetenstatementsforthispart.YouwillhearthestoryofItaliantenorAndreaBocelli.Decidewhetheryouth
最新回复
(
0
)