首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β,αm线性无关.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β,αm线性无关.
admin
2016-09-30
55
问题
设α
1
,…,α
m
,β为m+1维向量,β=α
1
+…+α
m
(m>1).证明:若α
1
,…,α
m
线性无关,则β一α
1
,…,β,α
m
线性无关.
选项
答案
令k
1
(β—α
1
)+…+k(β一α
m
)=0,即 k
1
(α
2
+α
3
,…,α
m
)+…+k
m
(α
1
,α
2
,…,α
m—1
)=0或 (k
2
+k
3
,…,k
m
)α
1
+(k
1
,k
2
,…,k
m
)α
2
+…+(k
1
,k
2
,…,k
m—1
)α
m
=0, [*] 所以k
1
=…=k
m
=0,故β一α
1
,…, β一α
m
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/4zu4777K
0
考研数学一
相关试题推荐
若函数f(x)=在x=0处连续,则().
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(I)0≤∫axg(t)dt≤x-a,x∈[a,b];(Ⅱ)f(x)dx≤∫abf(x)g(x)dx.
设z=z(x,y)是由方程e2yz+x+y2+z=7/4所确定的函数,则出dz|(1/2,1/2)=________.
已知a是常数,且矩阵A=可经初等列变换化为矩阵B=.求满足AP=B的可逆矩阵P.
曲线在t=π/4对应点处的曲率为________.
某班数学考试成绩呈正态分布N(70,100),老师将最高成绩的5%定为优秀,那么成绩为优秀的最少成绩是多少?
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
题设所给变上限定积分中含有参数x,因此令u=2x-t,则du=-dt,[*]
随机试题
女性,20岁。无痛性左颈部淋巴结肿大1个月。淋巴结活检示:找到R-S细胞。R-S细胞不会出现于下列哪种疾病
MRCP最合理扫描层厚是
下列有关公民权利的表述,哪些符合我国现行宪法的规定?()
实际观察法不是直接以建筑物的有关年限(特别是实际经过年数)来求取建筑物的折旧,而是注重建筑物的实际损耗程度。()
某人拥有一套住宅建筑面积为200m2,整幢建筑物总面积为8000m2。其房地总价为8000万元,其中建筑物总价为5500万元。该人占有的土地价值为()万元。
在电控燃油喷射方面,柴油机与汽油机的主要区别是什么?
有权依法吊销、收缴中国公民出境入境主要证件的机关有()。
课程标准提出“提高学生科学素养”的理念,是期望学生通过生物课的学习在哪些领域得到发展?
简述全面发展教育的组成部分及各组成部分之间的关系。
设w=exyz2,其中z=z(x,y)是由方程x+y+z+xyz=0确定的函数,求在x=0,y=1,z=-1处的dw.
最新回复
(
0
)