首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知常数k≥ln 2-l,证明:(x-1)(x-ln2x+2kln x-1)≥0.
已知常数k≥ln 2-l,证明:(x-1)(x-ln2x+2kln x-1)≥0.
admin
2022-09-22
84
问题
已知常数k≥ln 2-l,证明:(x-1)(x-ln
2
x+2kln x-1)≥0.
选项
答案
当x=1时,显然所证成立. 当x≠1时,令f(x)=x-ln
2
x+2k ln x-1(x>0),求导得 [*] 令g(x)=x-2ln x+2k,求导得 [*] 令g’(x)=0,得驻点x=2. ①当0<x<1时,g’(x)<0.因此g(x)在(0,1)上单调递减,则 g(x)>g(1)=1+2k≥1+2(ln 2-1)=2ln 2-1>0. 因此f’(x)>0,f(x)在(0,1)上单调递增,故f(x)<f(1)=0. 在(0,1)上,由x-1<0,f(x)<0,可得 (x-1)(x-ln
2
x+2k ln x-1)>0. ②当x>1时,可知当1<x<2时,g’(x)<0;当x>2时,g’(x)>0. 因此g(x)在(1,2)上单调递减,在(2,+∞)上单调递增,则 g(x)>g(2)=2-2ln 2+2k≥2-2ln 2+2(ln 2-1)=0. 因此f’(x)>0,f(x)在(1,+∞)上单调递增,故f(x)>f(1)=0. 在(1,+∞)上,由x-1>0,f(x)>0,可得 (x-1)(x-ln
2
x+2k ln x-1)>0. 综上所述,当x>0时,不等式(x-1)(x-ln
2
x+2k ln x-1)≥0恒成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/Hxf4777K
0
考研数学二
相关试题推荐
设y=y(χ,z)是由方程eχ+y+z=χ2+y2+z2确定的隐函数,则=_______.
交换积分次序∫-10dy∫21-yf(x,y)dx=________。
设A是n阶矩阵,r(A)<n,则A必有特征值______.
已知(x-1)y’’-xy’+y=0的一个解是y1=x,又知=ex-(x2+x+1),y*=-x2-1均是(x-1)y’’-xy’+y=(x-1)2的解,则此方程的通解是y=_______.
求下列不定积分:
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤C.
设f(χ)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:(1)存在ξ1,ξ2∈(0,3),使得f′(ξ1)=f′(ξ2)=0.(2)存在ξ∈(0,3),使得f〞(ξ)-2f′(ξ
求二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩,正负性指数p,q.
(2008年)设函数f(χ)在(一∞,+∞)内单调有界,{χn}为数列,下列命题正确的是【】
随机试题
A.法律B.行政法规C.地方性法规D.部门规章E.地方政府规章国务院常务会议通过的《中华人民共和国药品管理法实施条例》(国务院令第360号)是
土地管理法中的调整,仅仅限于()。
我国人口占世界人口的20%,耕地面积只占全世界耕地面积的( )。
如果电影院、KTV、溜冰场均设置在同一多层商店建筑内,则电影院的疏散楼梯间按()的要求进行设置。
按设立信托的不同行为方式划分,信托可以分为()。
读某国不同时间的人口变化图,回答问题。在下图所示的山区自然灾害链中,①②③④依次是()。
(2018年吉林)户外运动可以促进骨骼的健康,这是因为太阳光中的某种频率的电磁波可以促成维生素D的活化,促进身体吸收食物中钙和磷,从而促进骨骼的生长。这种电磁波是()。
关于友元,下列说法错误的是
缩写020代表的电子商务模式是()
AJOBWITHRISKSHaveyoueverbeentothecinemaandwonderedinamazement.how AMAZEfilmstarsmanaget
最新回复
(
0
)