首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,证明: (1)存在实数c,使对一切X∈Rn,有|χTAχ|≤cχTχ. (2)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵,证明: (1)存在实数c,使对一切X∈Rn,有|χTAχ|≤cχTχ. (2)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2019-08-06
87
问题
设A是n阶实对称矩阵,证明:
(1)存在实数c,使对一切X∈R
n
,有|χ
T
Aχ|≤cχ
T
χ.
(2)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
. 令c=max{|λ
1
|,|λ
2
|,…,|λ
n
|),则有正交变换χ=Py, 使χ
T
Aχ=[*]λ
i
y
i
2
,且y
T
y=χ
T
χ, 故|χ
T
Aχ|=[*]=cy
T
y=cχ
T
χ (2)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
则A+aE的全部特征值为λ
1
+a,…,λ
n
+a,若取a=max{|λ
1
|+1,…,|λ
n
|+1},则λ
i
+a≥λ
i
+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/55J4777K
0
考研数学三
相关试题推荐
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).求X,Y的联合密度函数;
求a,b及可逆矩阵P,使得P-1AP=B.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为求此二次型.
设二维非零向量α不是二阶方阵A的特征向量.证明:α,Aα线性无关;
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α+α2,α2+Xα3,Yα1线性相关的概率.
设有一批同型号产品,其次品率记为p.现有五位检验员分别从中随机抽取n件产品,检测后的次品数分别为1,2,2,3,2.(Ⅰ)若已知p=2.5%,求n的矩估计值;(Ⅱ)若已知n=100,求p的极大似然估计值;(Ⅲ)在情况(Ⅱ)下,
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果EX=μ,DX=σ2,试证明:Xi一(i≠j)的相关系数p=一;
设x=rcosθ,y=rsinθ,将如下直角坐标系中的累次积分化为极坐标系中的累次积分.
(1992年)设,其中f(x)为连续函数,则等于()
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上正值连续函数,a,b为常数,则等于()
随机试题
洪秀全宣传朴素平等观念,并为太平天国农民战争提供思想基础的文献有
1979年,邓小平在理论工作务虚会上指出,实现四个现代化的根本前提是()
患者男,21岁。急起兴奋,乱语,说有人要杀他,行为冲动6个小时入院。仔细追问病史,患者6小时前和朋友在歌厅唱歌时一起服用冰毒,具体剂量不详,服用后不久开始出现症状。患者既往没有类似发作,但经常服用此类物质超过半年。对此患者目前的处理正确的是
周作人在“五四”文学革命中的主要贡献是()。
在小李等车期间,有豪华型、舒适型、标准型三辆旅游车随机开过。小李不知道豪华型的标准,只能通过前后两辆车进行对比。为此,小李采取的策略是:不乘坐第一辆,如果发现第二辆比第一辆车更豪华就乘坐;如果不是,就乘坐最后一辆。那么,他能乘坐豪华型旅游车的概率是:
Wehadto______alotofnoisewhenthechildrenwereathome.
在辩证法看来,否定
Musiccomesinmanyforms;mostcountrieshaveastyleoftheirown.【C1】______theturnofthecenturywhenjazz(爵士乐)wasborn,
结构化布线成为网络设计和管理的首先考虑的问题,当实施结构化布线时,需要进行详细的规划设计。
查询订购单号首字符是“P”的订单信息,应该使用命令
最新回复
(
0
)