首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n阶实矩阵,且r(A)=N.证明:ATA的特征值全大于零.
设A为m×n阶实矩阵,且r(A)=N.证明:ATA的特征值全大于零.
admin
2018-05-25
51
问题
设A为m×n阶实矩阵,且r(A)=N.证明:A
T
A的特征值全大于零.
选项
答案
首先A
T
A为实对称矩阵,r(A
T
A)=n,对任意的X>0, X
T
(A
T
A)X=(AX)
T
(AX),令AX=α,因为r(A)=n,所以α≠0,所以 (AX)
T
(AX)=α
T
α-|α|>0,即二次型X
T
(A
T
A)X是正定二次型,A
T
A为正定矩阵,所以A
T
A的特征值全大于零.
解析
转载请注明原文地址:https://kaotiyun.com/show/doW4777K
0
考研数学三
相关试题推荐
设函数f(x,y)在D上连续,且其中D由y=,x=1,y=2围成,求f(x,y).
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
[*]+C,其中C为任意常数
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
设向量组(Ⅰ)α1,α2,…,αs线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βi(i=1,2,…,t)不能由(Ⅰ)α1,α2,…,αs线性表出,则向量α1,α2,…,αs,β1,β2,…,βs()
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
设A是主对角元为0的四阶实对称阵,E是4阶单位阵,B=,且E+AB是不可逆的对称阵,求A.
随机试题
A.复合先露B.脐带先露C.脐带脱垂D.脐带缠绕E.帆状胎盘
某省政府办公厅以办公厅的名义发布一个有关该省城市环境卫生管理处罚的规范性文件,这一做法:()
【2013年第4题】题31~35:某办公室平面长14.4m,宽7.2m,高度3.6m,墙厚0.2m(照明计算平面按长14.2m,宽7.0m),工作面高度为0.75m,平面如图所示,办公室中均匀布置荧光灯具,请回答照明设计中的下列问题,并列出解答过程。
工程施工组织设计的编制原则正确的是()。
2019年3月份,李某从老家甲省A市来到乙省,租住B市区,在C市文化路科技市场从一些抱小孩的妇女处低价购买假增值税专用发票(12本300份),并印制“代办各类发票”的名片,在B市区各大酒店门口向路人散发,后通过电话联系,向有意购买假发票的人出售假增值税专用
事件是由权利主体意志为转移的,能够引起经济法律关系发生,变更和终止的,有意识的活动。()
埃及由青铜时代进入铁器时代,铁器普遍使用是在()。
[*]
WhatdoesTeacherLiteach?Don’tyouoftengohomeonfoot?
DanielDevlinlivesinthesamehousewithhischildrenandseesthemeveryday—yetheisunabletorecognizethematall.Mr.D
最新回复
(
0
)