首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n阶实矩阵,且r(A)=N.证明:ATA的特征值全大于零.
设A为m×n阶实矩阵,且r(A)=N.证明:ATA的特征值全大于零.
admin
2018-05-25
26
问题
设A为m×n阶实矩阵,且r(A)=N.证明:A
T
A的特征值全大于零.
选项
答案
首先A
T
A为实对称矩阵,r(A
T
A)=n,对任意的X>0, X
T
(A
T
A)X=(AX)
T
(AX),令AX=α,因为r(A)=n,所以α≠0,所以 (AX)
T
(AX)=α
T
α-|α|>0,即二次型X
T
(A
T
A)X是正定二次型,A
T
A为正定矩阵,所以A
T
A的特征值全大于零.
解析
转载请注明原文地址:https://kaotiyun.com/show/doW4777K
0
考研数学三
相关试题推荐
若在x=-3处为条件收敛,则其收敛半径R=_________.
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
设γ1,γ2,…,γt和η1,η2…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值。
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有()
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
随机试题
我国出版工作的方针包括()等。
试述涉外仲裁协议的主要内容。
二维超声显示和测量出功能性右心室,房化右心室及固有右心房,这种瓣膜的先天畸形是
患者,女性,26岁。停经45天,突感下腹坠痛及肛门坠胀感,少量阴道流血及头晕、呕吐半天。体格检查:面色苍白,BP80/40mmHg,腹肌略紧张,下腹压痛。妇科检查:阴道少量血性物,宫颈举痛(+),后穹隆饱满,子宫稍大,附件区触诊
电子商务的核心业务是()。
针对个人住房贷款担保方式的说法,正确的有()。[2014年6月真题]
已知某小学一年级学生的体重平均数21kg、标准差3.2kg,身高平均数120cm、标准差6.0cm,则下列关于体重和身高离散程度的说法正确的是()
Thesecretarywantsto________allthefileclerkstomakepreparationsforthecompanyChristmasparty.
ThereportsfromtheDepartmentofCommerceindicatedthattheeconomyhadgrownatanannualratemuchhigherthanmosteconomi
Foryears,astronomersstruggledtocalculatetheageoftheuniverse.
最新回复
(
0
)