首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
admin
2018-05-25
84
问题
设A是n(n≥3)阶矩阵,证明:(A
*
)
*
=|A|
n-2
A.
选项
答案
(A
*
)
*
A
*
=|A
*
|E=|A|
n-1
E,当r(A)=N时,r(A
*
)=n,A
*
=|A|A
-1
.则(A
*
)
*
A
*
=(A
*
)
*
|A|A
-1
=| A |
n-1
-E,故(A
*
)
*
=|A |
n-2
A.当r(A)=n-1时,|A|=0,r(A
*
)=1,r[(A
*
)
*
]=0,即(A
*
)
*
=O,原式显然成立.当r(A)<n-1时.|A|=0,r(A
*
)=0,(A
*
)
*
=O,原式也成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/1EW4777K
0
考研数学三
相关试题推荐
(1)计算;(2)当x→1-时,求与等价的无穷大量.
设函数f(x)在[a,b]上连续,在(a,b)上可导且f(a)≠f(b).证明:存在η,ξ∈(a,b),使得.
试证明:曲线y=恰有三个拐点,且位于同一条直线上.
设线性无关的函数y1(x),y2(x),y3(x)均是方程yˊˊ+p(x)yˊ+q(x)y=f(x)的解C1,C2是任意常数,则该方程的通解是()
一商店经销某种商品,每周进货量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润500元,试计算此商店经销
n维向量组α1,α2,…,α3(3≤s≤n)线性无关的充要条件是()
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αβT=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
随机试题
某患者因从马车上掉下,头后枕部着地,颈部活动受限,下颈椎压痛明显,四肢弛缓性瘫,躯干感觉平面在胸骨柄以下,痛、温觉消失,不能自行排尿,诊断首先考虑
下列哪种给药途径,药物的药效出现最快()。
A.续断B.紫河车C.菟丝子D.何首乌E.益智仁温肾补精,益气养血的中药是
某种地质作用造成了牛轭湖相沉积,则该种地质作用为()。
设备监理项目上的冲突分为()。
当设计无要求时,女儿墙与屋顶交接处泛水高度最小值是()mm。
下列属于电气防爆基本措施的是()。
以是否以自己的行为行使投诉权为依据,旅游投诉可以分为()。
根据教学的需求,组织学生对实际事物进行观察、研究,以获得新知识,巩固、验证已学知识的教学方法被称为()。
毛泽东思想和中国特色社会主义理论体系是马克思主义中国化的两大理论成果。贯穿这两大理论成果始终,并体现在两大成果各个基本观点中的世界观和方法论的基础是
最新回复
(
0
)