首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
admin
2020-06-05
43
问题
设α
1
,α
2
,…,α
n
是一组n维向量,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
选项
答案
必要性 设a为任一n维向量.因为α
1
,α
2
,…,α
n
线性无关,而α
1
,α
2
,…,α
n/sub>,α是n+1个n维向量,是线性相关的,所以α能由α
1
,α
2
,…,α
n
线性表示,且表示式是唯一的. 充分性 已知任一n维向量都可由α
1
,α
2
,…,α
n
线性表示,故单位坐标向量组e
1
,e
2
,…,e
n
能由α
1
,α
2
,…,α
n
线性表示,于是有 n≤R(e
1
,e
2
,…,e
n
)≤R(α
1
,α
2
,…,α
n
)≤n 即R(α
1
,α
2
,…,α
n
)=n,所以α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/58v4777K
0
考研数学一
相关试题推荐
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA—1)—1=()
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
n阶实对称矩阵A正定的充分必要条件是()
设齐次线性方程组的系数矩阵为A,且存在3阶方阵B≠O,使AB=O,则
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
α1,α2,α3,β1,β2均为4维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
要使都是线性方程组AX=0的解,只要系数矩阵A为
随机试题
人民检察院抗诉的民事案件应符合下列条件:人民法院驳回再审申请的;人民法院逾期未对再审申请作出裁定的;再审判决、裁定有________。
股骨颈骨折内收型可有髋关节后脱位可有
男性,73岁,因“心动过速”就医,于服用下列药物后不久,突觉头晕、胸闷、欲倒,心率38次/分。试问可能和哪种药有关
有关慢性支气管炎诊断标准,咳嗽、咳痰反复发作时间应为
对于下列哪些人民法院作出的生效法律文书,当事人不得依照审判监督程序申请再审?()
根据我国《民法通则》以及相关的法律规范的规定,能够引起债的发生的法律事实,即债的发生根据,主要包括()。
商业银行在办理个人存款业务时,下列表述正确的是()。
DoUntil...Loop循环命令的功能是()。
Accordingtogovernmentstatistics,menofallsocialclassesinBritainvisitpubsquiteoften,【21】______thekindofpubth
A、Itwarnsyoungpeopleofthehardshipsofasuccessfulwriter.B、Itadvisesyoungpeopletogiveuptheirideaofbecomingwri
最新回复
(
0
)