首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
admin
2019-01-19
93
问题
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解。
选项
答案
由AB=0知,B的每一列均是Ax=0的解,且r(A)+r(B)≤3。 (1)若k≠9,则r(B)=2,于是r(A)≤1,显然r(A)≥1,故r(A)=1。可见此时Ax=0的基础解系所含解向量的个数为3一r(A)=2,矩阵B的第一列、第三列线性无关,可作为其基础解系,故Ax=0的通解为x=k
1
(1,2,3)
T
+k
2
(3,6,k)
T
,k
1
,k
2
为任意常数。 (2)若k=9,则r(B)=1,从而1≤r(A)≤2。 ①若r(A)=2,则Ax=0的通解为x=k
1
(1,2,3)
T
,k
1
为任意常数。 ②若r(A)=1,则Ax=0的同解方程组为:ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为 x=k
1
(一[*],0)
T
+k
2
(一[*],0,1)
T
,k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/5BP4777K
0
考研数学三
相关试题推荐
设D是χ0y平面上以(1,1),(-1,1)和(-1,-1)为顶点的三角形域,D1是D在第一象限的部分,则(χy+cosχsiny)dχdy等于【】
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当口为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向
设矩阵A、B的行数都是m,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
某商场销售某种型号计算机,只有10台,其中有3台次品.现已售出2台.某顾客又来到该商场购买此种型号计算机.若该顾客只买一台,求他买到正品的概率;
检查员逐个地检查某产品,每次花10秒钟检查一个,但也可能有的产品需要再花10秒钟重复检查一次,假设每个产品需要重复检查的概率为0.5,求在8小时内检查员检查的产品个数多于1900个的概率是多少?
已知3维列向量β不能由α1=能否相似对角化?若能则求出可逆矩阵P使P—1AP=A.若不能则说明理由。
已知曲线y=f(x)在x=1处的切线方程为y=x一1,求。
求f(x)=的极值.
设α1,α2,α3均为3维列向量,记矩阵A=[一α1,2α2,α3],B=[α1+α2,α1—4α3,α2+2α3],如果行列式|A|=一2,则行列式|B|=__________.
设λ1,λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1,λn的特征向量,记求二元函数的最大值及最大值点。
随机试题
设计一个数据库,包括三个实体集,实体类型“商店”的属性有:商店编号、店名、店址、店经理;实体类型“会员”的属性有:会员编号、会员名、地址;实体类型“职工”的属性有:职工编号、职工姓名、性别、工资。每家商店有若干职工,但每个职工只能服务于一家商店;每家商店有
在Windows7中,以下属于“合法”文件名的是()。
关于羊膜带综合征描述,错误的是
关于人体的铁代谢,下列说法错误的是
甲市乙区公安分局所辖派出所以李某制造噪声干扰他人正常生活为由.处以500元罚款、李某不服申请复议。下列哪些机关可以成为本案的复议机关?(2011年卷二第81题)
对生产性建设项目的“三同时”监察不包括()。
下列关于现金流分析的说法,不正确的是()。
某公司2010年销售收入为5000万元,销售成本为3600万元;年初应收账款余额为2600万元,年末应收账款余额为2400万元,则该公司2010年的应收账款周转率为()次。
在会计实践中,通常将单位在日常经营和业务活动中的资金运动称为()。
在苏州大型园林中具有代表性的园林是()。
最新回复
(
0
)