首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
admin
2016-11-03
75
问题
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
选项
答案
设A=[*],其中α
j
为A的行向量,B=[b
ij
]
r×r
,则BA=[*],其中β
j
为BA的行向量,则 [*] 因α
1
,α
2
,…,α
r
线性无关,且B为满秩矩阵,即 r(B)=r=向量组(β
1
,β
2
,…,β
r
)的个数, 故β
1
,β
2
,…,β
r
线性无关. 因α
j
为某齐次线性方程组的基础解系,则因β
1
,β
2
,…,β
r
均为α
1
,α
2
,…,α
r
的线性组合,故β
1
,β
2
,…,β
r
也必为该齐次线性方程组的r个解.又它们线性无关,所以β
1
,β
2
,…,β
r
即BA的r个行向量也为该齐次方程组的一个基础解系.
解析
将矩阵A,B的行向量组的关系转化为矩阵关系证之.
转载请注明原文地址:https://kaotiyun.com/show/5Xu4777K
0
考研数学一
相关试题推荐
[*]
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
设三阶矩阵A的特征值为λ1=﹣1,λ2=0,λ3=1,则下列结论不正确的是().
题设所给变上限定积分中含有参数x,因此令u=2x-t,则du=-dt,[*]
设随机变量X和Y相互独立,X在区间(0,2)上服从均匀分布,y服从参数为1的指数分布,则概率P{X+Y>1}=().
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
y=sin4x+cos4x,则y(n)=__________(n≥1).
随机试题
湿性啰音的特点中不包括下述哪项
CO中毒性缺氧时,动物的黏膜呈现
大青叶、板兰根、青黛共同功效是
以下关于人民法院就数个证据对同一事实证明力认定原则的表述,正确的是()。
一个单位是否单独设置会计机构,主要由以下因素决定()。
确定地块的最佳利用方式,包括确定( )。
心理发展的不平衡性是指()。
英国肯特大学的研究人员让两组志愿者分别玩益智游戏和观看关于跑车的纪录片,然后再让他们进行室内自行车耐力测试。结果,自认为筋疲力尽的第一组成员比第二组更容易放弃。然而,研究者却发现,两组志愿者的血压、耗氧量及心排血量之间并没有差异。由此可以推出()
ThegapbetweenthosewhohaveaccesstocomputersandtheInternetandthosewhocouldn’tspelltroublenotonlyforclassroom
TheEmergingOnlineGiantsTheymaynothavethenamerecognitionofaGoogleoraYahoo!.buttheycanclaimtobelongint
最新回复
(
0
)