首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs其秩为r2,且βi,i=1,2,…,s均可由向量组(Ⅰ)α1,α2,…,αs线性表出,则必有 ( )
向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs其秩为r2,且βi,i=1,2,…,s均可由向量组(Ⅰ)α1,α2,…,αs线性表出,则必有 ( )
admin
2019-08-12
476
问题
向量组(I)α
1
,α
2
,…,α
s
,其秩为r
1
,向量组(Ⅱ)β
1
,β
2
,…,β
s
其秩为r
2
,且β
i
,i=1,2,…,s均可由向量组(Ⅰ)α
1
,α
2
,…,α
s
线性表出,则必有 ( )
选项
A、α
1
+β
1
,α
2
+β
2
,…,α
s
+β
s
的秩为r
1
+r
2
B、α
1
一β
1
,α
2
一β
2
,…,α
s
一β
s
的秩为r
1
一r
2
C、α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的秩为r
1
+r
2
D、α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的秩为r
1
答案
D
解析
设α
1
,α
2
,…,α
s
的极大线性无关组为α
1
,α
2
,…,α
r1
,则α
i
(i=1,2,…,s)均可由α
1
,α
2
,…,α
r1
,线性表出,又β
i
(i=1,2,…,s)可由(Ⅰ)表出,即可由α
1
,α
2
,…,α
r1
线性表出,即α
1
,α
2
,…,α
r1
也是向量组α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的极大线性无关组,故r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
)=r
1
,其余选项可用反例否定.
转载请注明原文地址:https://kaotiyun.com/show/5YN4777K
0
考研数学二
相关试题推荐
设3阶矩阵A可逆,且A-1=A*为A的伴随矩阵,求(A*)-1.
设A为3阶矩阵,3维列向量α,Aα,A2α线性无关,且满足3Aα-2A2α-A3α=0,令矩阵P=[αAαA2α],(1)求矩阵B,使AP=PB;(2)证明A相似于对角矩阵.
假设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≤0,记F(x)=,证明在(a,b)内F’(x)≤0.
设向量组(I)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βj(j=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1,β
求极限:其中a≠0.
设A,B是同阶方阵.若A,B相似,试证A,B有相同的特征多项式;
积分()
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设f(χ)=χ-sinχcosχcos2χ,g(χ)=,则当χ→0时f(χ)是g(χ)的
随机试题
阅读《答司马谏议书》中的一段文字,然后回答下列小题。至于怨诽之多,则目前知其如此也。人习于苟且非一日,士大夫多以不恤国事、同俗自媚于众为善。上乃欲变此,而某不量敌之众寡,欲出力助上以抗之,则众何为而不汹汹然!盘庚之迁,胥怨者民也,非特朝廷士大夫而已。盘庚
段锋(1991年5月出生)于2007年8月与李琳(1990年8月出生)相识。建立恋爱关系后不到两个月,两人即在段锋的工厂单身宿舍同居。同居后,两人常因琐事争吵。2007年11月14日晚,李与段又发生争吵。段欲外出躲避,被李拉住不放。二人争吵时,住隔壁的赵某
集中式空调系统适用于()。
关于地下工程防水混凝土施工缝留置说法,正确的有()。
关于建筑市场信用体系建设,下列说法正确的是()。
装载过境动物的运输工具到达口岸时,口岸检验检疫机构对装载容器外表和运送人员进行消毒。( )
存款人可以申请开立临时存款账户的情况包括()。
从作业成本管理的角度来看,降低成本的途径具体包括()。
期间费用是指企业在一定期间的日常活动发生的耗费,它可能计入特定核算对象如产品的成本,也可能计入当期损益。()
某高校组织了篮球比赛。其中机械学院队、外语学院队、材料学院队和管理学院队被分在同一个小组,每两队之间进行一场比赛且无平局。结果机械学院队赢了管理学院队,且机械学院队、外语学院队和材料学院队胜利的场数相同,则管理学院队胜了多少场?()
最新回复
(
0
)