首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
admin
2018-11-11
105
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明此方程组的系数矩阵A的秩为2.
(2)求a,b的值和方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是AX=β的3个线性无关的解,则,α
2
-α
1
,α
3
-α
1
是AX=0的2个线性无关的解.于是AX=0的解集合的秩不小于2,即4-r(A)≥2,r(A)≤2, 又因为A的行向量是两两线性无关的,所以r(A)≥2. 两个不等式说明了r(A)=2. (2) [*] 由r(A)=2,得出a=2,b=-3. 代入后继续作初等行变换化为简单阶梯形矩阵: [*] 得同解方程组 [*] 求出一个特解(2,-3,0,0)
T
和AX=0的基础解系(-2,1,1,0)
T
,(4,-5,0,1)
T
.得到方程组的通解: (2,-3,0,0)
T
+c
1
(-2,1,1,0)
T
+c
2
(4,-5,0,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/VRj4777K
0
考研数学二
相关试题推荐
设一1<x1<0,xn+1=xn2+2xn(n=0,1,2,…).证明数列{xn}的极限存在,并求此极限值.
设随机变量X的绝对值不大于1,且P{x=-1}=,在事件{|X|<1}出现的条件下,X在(一1,1)内任一子区间上取值的条件概率与该子区间长度成正比,求(1)X的分布函数F(x);(2)P{X2=1}.
设∑:x2+y2+z2=a2(z≥0),∑1为∑在第一卦限的部分,则()
设X1,X2,…,X6是来自正态总体N(0,32)的一个简单随机样本,求常数a,b,c使T=aX1+b(X2+X3)2+c(X4+X5+X6)2服从χ(3).
设函数f(x)连续,且满足f(x)=ex+∫0xtf(t)dt一x∫0xf(t)dt,求f(x)的表达式·
设A,B,C是n阶方阵,满足r(C)+r(B)=n,(A+E)C=O,B(AT一2E)=O.证明:A~A,并求A及|A|.
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
设f(x)连续,φ(x)=∫01f(xt)dt,且=A,(A为常数),求φ’(x),并讨论φ’(x)在x=0处的连续性.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
随机试题
画出图Ⅱ-15所示三相变压器的位形图,并判断其连接组别。
劳神过度易损伤的内脏是
关于儿童颌骨骨折的治疗,哪项是错误的
患者,女,45岁,食欲不振数日,症见嗳气吞酸、腹胀泄泻,证属脾胃虚弱、中气不和,治当健脾和胃,宜选用的中成药是
对使用新能源车船、节约能源车船的,免征车船税。()
以美国教育家杜威为代表的现代教育派倡导的“三中心”是()。
正如党的十七大报告所总结的:“改革开放不是一蹴而就的”,改革开放不是一次轻松浪漫的旅行,而是一次决定中华民族历史命运的伟大远航,它有___________的时刻,也时常充满惊涛骇浪。填入画横线部分最恰当的一项是()。
Swisswatchmakershavefirmlyestablishedthemselvesastheworld’sleadingwatchmakersoverthepastthreecenturies.Withare
Amajorreasonforconflictintheanimalworldisterritory.Themaleanimal【C1】______anarea.Thesizeoftheareais【C2】____
ItisknowntousthatEnglishisnotasoldasChinese,butitiswidelyusedbymostpeopleallovertheworld.Englishspeake
最新回复
(
0
)