首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
admin
2018-11-11
67
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明此方程组的系数矩阵A的秩为2.
(2)求a,b的值和方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是AX=β的3个线性无关的解,则,α
2
-α
1
,α
3
-α
1
是AX=0的2个线性无关的解.于是AX=0的解集合的秩不小于2,即4-r(A)≥2,r(A)≤2, 又因为A的行向量是两两线性无关的,所以r(A)≥2. 两个不等式说明了r(A)=2. (2) [*] 由r(A)=2,得出a=2,b=-3. 代入后继续作初等行变换化为简单阶梯形矩阵: [*] 得同解方程组 [*] 求出一个特解(2,-3,0,0)
T
和AX=0的基础解系(-2,1,1,0)
T
,(4,-5,0,1)
T
.得到方程组的通解: (2,-3,0,0)
T
+c
1
(-2,1,1,0)
T
+c
2
(4,-5,0,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/VRj4777K
0
考研数学二
相关试题推荐
设随机变量X1,X2,…,Xn(n>2)相互独立,且均服从N(0,1),记,i=1,2,…,n.求(1)D(Yi);(2)coy(Y1,Yn).
设线性方程组试问当a,b为何值时,方程组有唯一解,无解,有无穷多解?并求出无穷多解时的通解.
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为()
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)c=0()
求一组向量α1,α2,使之与α3=(1,1,1)T成为R3的正交基;并把α1,α2,α3化成R3的一个标准正交基.
验证α1=(1,一1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(一9,一8,一13)T用这个基线性表示.
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x—e-x是某二阶线性非齐次方程三个解,求此微分方程.
(1)验证函数(一∞<x<+∞)满足微分方程y”+y’+y=ex;(2)利用(1)的结果求幂级数的和函数.
求下列齐次线性方程组的基础解系:(3)nx1+(n一1)x2+…+2xn-1+xn=0.
设有向量组问α,β为何值时:向量b不能由向量组A线性表示;
随机试题
9个月男孩,因其尚未出牙就诊,最恰当的处理是
某市政协扎实推进“请你来协商”平台建设,开展“请你来协商”重点活动,通过面对面协商、点对点交流,不少意见建议得到采纳并转化为工作举措。从实质民主角度看,“请你来协商”平台()。
Therearemomentsinlifewhenyou_______【C1】someonesomuchthatyoujustwanttopickthemfromyourdreamsandhugthemfor
下列是右心衰竭致心源性水肿时的体征,除了
有一名颅内压增高病人,持续颅内压增高导致病理生理紊乱,但应除外
关于工业小型汽轮机转子安装技术要点的说法中,正确的有()。
下列不属于系统风险的是()
内容、设计、编校质量均合格,印刷装订质量不合格的成品图书,其总体质量等级为()。
已知数列{log3(an+1)}(a∈N*)为等差数列,a2=2,a4=26,则数列{an}的通项公式为______.
揭示了“教师的期望使学生的学习成绩和行为表现发生积极变化”这一原理的效应称为()。
最新回复
(
0
)