首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
admin
2019-03-08
52
问题
具有特解y
1
=e
-x
,y
2
=2xe
-x
,y
3
=3e
x
的三阶常系数齐次线性微分方程是
选项
A、y’’’-y"—y’+y=0.
B、y’’’+y"—y’-y=0.
C、y’’’-6y"+11y’-6y=0.
D、y’’’-2y"-y’+2y=0.
答案
B
解析
[分析] 由于常系数线性齐次微分方程由其特征方程唯一确定,因此可先由齐次方程的解得到对应的特征根,再由根与系数的关系确定特征方程,从而得到齐次微分方程.
[详解] 由特解的形式可知,对应特征方程的根为
λ
1
=λ
2
=-1,λ
3
=1,于是特征方程为 (λ+1)
2
(λ-1)=λ
3
+λ
3
-λ-1=0,故所求方程为y’’’+y"-y’-y=0,故应选(B).
[评注] 已知齐次微分方程的特解,求微分方程,关键在于掌握特征根与对应特解之间的关系,包括实单根、重根和复数根所对应的特解形式.
转载请注明原文地址:https://kaotiyun.com/show/5Zj4777K
0
考研数学二
相关试题推荐
设f(χ)=∫0χdt,求f′(χ).
判断下列结论是否正确,并证明你的判断.(Ⅰ)若χn<yn(n>N),且存在极限χn=A,yn=B,则A<B;(Ⅱ)设f(χ)在(a,b)有定义,又c∈(a,b)使得极限f(χ)=A,则f(χ)在(a,b)有界;(Ⅲ)f(χ)=
设函数f(χ)连续,且∫0χf(t)dt=sin2χ+∫0χtf(χ-1)dt.求f(χ).
求曲线r=a(1+cosθ)的曲率.
设A是n阶矩阵,证明方程组Aχ=b对任何b都有解的充分必要条件是|A|≠0.
设f(x)在x=0处连续,且,则曲线f(x)在点(0,f(0))处的切线方程为__________。
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
设n阶矩阵A与B等价,则必有()
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
(1997年试题,三(4))求微分方程(3a2+2xy一y3)dx+(x3一2xy)dy=0的通解.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)