首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2019-05-08
75
问题
设矩阵
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
(1)求a的值.A的特征多项式为 [*] 若λ
1
=λ
2
=2是特征方程的二重根,则由命题2.5.2.1得1+4+5=2+2+λ
3
,则λ
3
=6,于是A的特征值为2,2,6.再利用命题2.5.2.1得 λ
1
λ
2
λ
3
=2×2×6=6(a+6), 即 a=-2. 或者,若λ=2是特征方程的二重根,由式①知,必有2
2
-8×2+18+3a=0,解得a=-2. 若λ=2不是特征方程的二重根,设λ
0
为其二重根,则由命题2.5.2.1得 2+λ
0
+λ
0
=1+4+5, 即 λ
0
=4. 于是A的特征值为2,4,4.再由命题2.5.2.1得 2×4×4=|A|=6(a+6), 解得 a=-2/3. 或者,当λ=2不是特征方程的二重根时,则由式①知λ
2
一8λ+18+3a必为完全平方λ
2
-8λ+4
2
=(λ-4)
2
.因而18+3a=16,解得a=-2/3. (2)讨论A是否可相似对角化. 当a=-2时,A的特征值为2,2,6,特征矩阵[*]的秩为1,故二重特征值λ=2对应的线性无关的特征向量有2个,由命题2.5.3.2(3)知A可相似对角化. 当a=-2/3时,A的特征值为2,4,4,特征矩阵[*]的秩为2,故二重特征值λ=4对应的线性无关的特征向量只有1个.由该命题知,A不可相似对角化. 注:命题2.5.2.1 设λ
1
,λ
2
,…,λ
n
,为n阶矩阵A=[a
ij
]的n个特征值,则(1)λ
1
+λ
2
+…+λ
n
=a
11
+a
22
+…+a
nn
=tr(A); (2)λ
1
λ
2
…λ
n
=|A|. 命题2.5.3.2 (3)n阶矩阵A可相似对角化的另一充要条件是A的n
i
重特征值对应的线性无关的特征向量的个数等于其重数n
i
,即n-秩(λ
i
E-A)=n
i
,亦即秩(r
i
E-A)=n-n
i
,其中n
i
为特征值λ
i
的重数,从而将A是否可相似对角化的问题转化为特征矩阵r
i
E一A的秩的计算问题.
解析
转载请注明原文地址:https://kaotiyun.com/show/5sJ4777K
0
考研数学三
相关试题推荐
级数的收敛域为______,和函数为______.
求.
证明:当x>1时,.
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数。
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
设总体X的概率密度函数为f(x;θ)=其中0<0<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=________;θ的矩估计量
设随机变量X和Y分别服从,已知P{X=0,Y=0}=求:(Ⅰ)(X,Y)的分布;(Ⅱ)X和Y的相关系数;(Ⅲ)P{x=1|X2+Y2=1}。
设求矩阵A可对角化的概率.
设平面区域D由曲线与直线及y轴围成,计算二重积分
随机试题
肝门横断层面上的结构不包括
下列关于《中华苏维埃共和国婚姻法》的内容,下列表述正确的是()
A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积Ⅲ型超敏反应
寄生主要对象是封盖后的老幼虫和蛹,它们靠吸食幼虫和蛹体汁液进行繁殖,经常造成幼虫无法化蛹,或蛹体腐烂于巢房。此病是()。
下列各项中,属于管理人员行为规范的是
对自动控制要求的核心是必须保证控制的()。
某钢筋混凝土结构工程的框架柱表面出现局部蜂窝麻面,经调查分析,其承载力满足设计要求,则对该框架柱表面质量问题一般的处理方式是()。
2016年10月19日凌晨,神舟十一号飞船与()自动交会对接成功。
甲公司与乙公司签订一项食品买卖合同,但因所在地供电局无故断电,甲公司无法生产,以致交付迟延。就此给乙公司造成的损失______。
THERE’SABIGMARKETOUTTHERE!DouglasMarketingCompanyisofferinganewseriesofseminarsthatcanhelpyoufindthema
最新回复
(
0
)