首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h
admin
2017-10-23
26
问题
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0;
(Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h)内可导,证明:存在0<θ<1使得
=f’(a+θh)一f’(a一θh).
选项
答案
(Ⅰ)由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件,故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)一f(a)=f’(ξ
1
)(c一a), ξ
1
∈(a,c); f(b)一f(c)=f’(ξ
2
)(b一c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c一a), ① 一f(c)=f’(ξ
2
)(b一c). ② 由于c一a>0,b一c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0, f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 f"(ξ)=[*]>0. (Ⅱ)令F(x)=f(a+x)+f(a一x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值 定理可得存在θ∈(0,1)使得 [*]=F’(θh). 由于 F(h)一F(0)=f(a+h)+f(a一h)一2f(a), F’(x)=f’(a+x)一f’(a一x), F’(θh)=f’(a+θh)一f’(a一θh), 因此存在满足0<θ<1的θ使得 [*]=f’(a+θh)一f’(a一θh).
解析
(Ⅰ)明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
(Ⅱ)在[a,a+h]和[a一h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)一f(a)=f’(a+θ
1
h)h, f(a一h)一f(a)=一f’(a一θ
2
h)h,
这时有
=f’(a+θ
1
h)一f’(a一θ
2
h),然而θ
1
与θ
2
未必相等.若将f(a+h)一2f(a)+f(a一h)重新组合成
f(a+h)一2f(a)+f(a一h)=[f(a+h)+f(a一h)]一[f(a+0)+f(a—0)],
我们发现它是F(x)=f(a+x)+f(a一x)在点x=h的值减去在点x=0的值,并且f’(a+θh)一f’(a一θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://kaotiyun.com/show/5sX4777K
0
考研数学三
相关试题推荐
求微分方程yy"=y’2满足初始条件y(0)=y’(0)=1的特解.
求幂级数的和函数.
求幂级数的收敛区间.
级数在—1<x<1内的和函数为__________.
设随机变量(X,Y)的分布函数为F(x,y),用它表示概率P(一X<a,Y<y),则下列结论正确的是().
设((x一1)(t一1)>0,x≠t),函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
已知是连续函数,求a,b的值.
变换下列二次积分的积分次序:
设y=f(lnx)ef(x),其中f可微,计算
随机试题
Thousandsofyearsago,tenofourverydistantancestorswerehungry.Theywentoutandpickedberriesorduguprootstoeat.
1岁小儿未接种过卡介苗,PPD阳性表示
A.漏出液B.渗出液C.脓性胸液D.水性胸液E.乳糜性胸液充血性心衰产生的胸腔积液为()
2pm医师为胡女士开出医嘱:地西泮50mg,po,sos。此项医嘱失效的时间至
导航电子地图录入的背景数据包括()。
《项目申请报告》中“建设用地、征地拆迁及移民安置分析”的主要内容不包括()。
在设计合同履行过程中,设计人未开始设计工作时,发包人要求终止或解除合同,则( )。
政府大幅发行国债会改变证券市场的证券供应,引起股票价格的上升。( )
教师把实物、教具展示给学生看,或者向学生作示范性实验,使学生通过直观感知,从而获得知识、发展能力的方法,叫做()
戒毒劳动教养人员适应期的主要工作包括()。
最新回复
(
0
)