首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h
admin
2017-10-23
48
问题
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0;
(Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h)内可导,证明:存在0<θ<1使得
=f’(a+θh)一f’(a一θh).
选项
答案
(Ⅰ)由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件,故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)一f(a)=f’(ξ
1
)(c一a), ξ
1
∈(a,c); f(b)一f(c)=f’(ξ
2
)(b一c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c一a), ① 一f(c)=f’(ξ
2
)(b一c). ② 由于c一a>0,b一c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0, f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 f"(ξ)=[*]>0. (Ⅱ)令F(x)=f(a+x)+f(a一x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值 定理可得存在θ∈(0,1)使得 [*]=F’(θh). 由于 F(h)一F(0)=f(a+h)+f(a一h)一2f(a), F’(x)=f’(a+x)一f’(a一x), F’(θh)=f’(a+θh)一f’(a一θh), 因此存在满足0<θ<1的θ使得 [*]=f’(a+θh)一f’(a一θh).
解析
(Ⅰ)明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
(Ⅱ)在[a,a+h]和[a一h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)一f(a)=f’(a+θ
1
h)h, f(a一h)一f(a)=一f’(a一θ
2
h)h,
这时有
=f’(a+θ
1
h)一f’(a一θ
2
h),然而θ
1
与θ
2
未必相等.若将f(a+h)一2f(a)+f(a一h)重新组合成
f(a+h)一2f(a)+f(a一h)=[f(a+h)+f(a一h)]一[f(a+0)+f(a—0)],
我们发现它是F(x)=f(a+x)+f(a一x)在点x=h的值减去在点x=0的值,并且f’(a+θh)一f’(a一θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://kaotiyun.com/show/5sX4777K
0
考研数学三
相关试题推荐
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e—x一3e2x为特解,求该微分方程.
计算
求幂级数的和函数.
设X~N(2,σ2),且P(2≤X≤4)=0.4,则P(X<0)=_________.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(1)求方程组(I)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设{an}与{bn}为两个数列,下列说法正确的是().
求极限
设y=,求它的反函数x=φ(y)的二阶导数及φ’’(1).
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
随机试题
男,50岁,有慢性乙肝病史已30年,半天来呕血4次,量约1200ml,黑便2次,量约600g,伴头晕、心悸。入院查体:血压8/6kPa(60/45mmHg),心率180次/分,巩膜轻度黄染,腹部膨隆,移动性浊音阳性。此病人初步考虑是()。
A.血尿B.蛋白尿C.脓尿D.多尿E.少尿或无尿急性肾炎最具特征的尿异常表现
2011年7月,某市公安机关模仿诗歌《见与不见》的语言和风格,在官方网站上发布信息,敦促在逃人员投案自首:“你逃,或者不逃,事就在那,不改不变。你跑,或者不跑,网就在那,不撤不去。你想,或者不想,法就在那,不偏不倚。你自首,或者不自首,警察就在那,不舍不弃
根据我国《专利法》,发明专利权的保护期为()年。
票据贴现属于()。
请阅读下列材料:材料1:《电子表格的制作》是人教版七年级上册第三单元第9课的内容。其主要包括:Excel的启动与退出;Excel的窗口组成;工作簿、工作表的概念及其关系;单元格的概念及表示:数据的输入和修改等内容。Excel与Word属于同一家族,本身有
首届世界女子足球锦标赛于在_______年_______举行。
在教学中如何贯彻启发性原则?
谈谈对你影响最大的一个人。
材料一:“甲盗,赃值千钱,乙知其盗,受分,赃不盈一钱。问乙何论?同论。”——《法律答问》材料二:“甲盗钱以买丝,寄乙,乙受,
最新回复
(
0
)