首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0; (Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h
admin
2017-10-23
49
问题
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0;
(Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h)内可导,证明:存在0<θ<1使得
=f’(a+θh)一f’(a一θh).
选项
答案
(Ⅰ)由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件,故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)一f(a)=f’(ξ
1
)(c一a), ξ
1
∈(a,c); f(b)一f(c)=f’(ξ
2
)(b一c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c一a), ① 一f(c)=f’(ξ
2
)(b一c). ② 由于c一a>0,b一c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0, f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 f"(ξ)=[*]>0. (Ⅱ)令F(x)=f(a+x)+f(a一x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值 定理可得存在θ∈(0,1)使得 [*]=F’(θh). 由于 F(h)一F(0)=f(a+h)+f(a一h)一2f(a), F’(x)=f’(a+x)一f’(a一x), F’(θh)=f’(a+θh)一f’(a一θh), 因此存在满足0<θ<1的θ使得 [*]=f’(a+θh)一f’(a一θh).
解析
(Ⅰ)明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
(Ⅱ)在[a,a+h]和[a一h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)一f(a)=f’(a+θ
1
h)h, f(a一h)一f(a)=一f’(a一θ
2
h)h,
这时有
=f’(a+θ
1
h)一f’(a一θ
2
h),然而θ
1
与θ
2
未必相等.若将f(a+h)一2f(a)+f(a一h)重新组合成
f(a+h)一2f(a)+f(a一h)=[f(a+h)+f(a一h)]一[f(a+0)+f(a—0)],
我们发现它是F(x)=f(a+x)+f(a一x)在点x=h的值减去在点x=0的值,并且f’(a+θh)一f’(a一θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://kaotiyun.com/show/5sX4777K
0
考研数学三
相关试题推荐
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
求
设X~N(0,1),Y=X2,求Y的概率密度函数.
求微分方程的通解.
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξ(x)dx=∫ξbf(x)dx.
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件=0,则().
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
设y=f(x)在[0,+∞]上有连续的导数,且fˊ(x)>0,f(0)=0,f(x)的值域也是[0,+∞].又设x=φ(y)是y=f(x)的反函数,常数a>0,b>0,证明:,当且仅当a=φ(b)时上式取等号.
设函数f(x)有任意阶导数,且f’(x)=f2(x),则当n>2时,f(n)(x)=________.
随机试题
子宫内膜的上皮为单层柱状,以分泌细胞为主,纤毛细胞少。
某城市轻轨建设项目,按照现行相关法律法规之规定,应在( )阶段征求公众对该项目可能造成环境影响的意见。
下列属于建设工程(产品)及其生产的特点的有()。
A公司2017年至2020年与投资性房地产有关的业务如下(不考虑土地使用权):资料一:2017年8月3日与乙公司签订租赁合同,将一栋自用办公楼出租给乙公司,租期为3年,年租金为200万元。2017年9月30日为租赁期开始日。假定租赁期内每年年末支付租金(
李某赴宴饮酒,请持有驾照的孙某代驾其车,孙某违章撞伤游客王某,交管部门认定孙某负全责。以下假定情形中,对王某的赔偿责任表述正确的是()。
属于全国重点文物保护单位的有()。
走动和祭祀,都是一种亲近的举动。认识到亲朋可能不在,更不能不亲近我们的历史和传统。套用孔子“祭如在”的思路,不论历史是否能够___________,后人均可以理解历史“如历史在”、__________传统“如传统在”。对于往昔,要人人自己去体会。有了自身的
小张因为太久没有使用支付宝了,故忘记了支付密码的最后两位数字,只记得其中有一位是4,则他最多要试()次才能保证把密码解开。
杂言——关于著作的作品遭人毁骂,我们常能置之不理,说人家误解了我们或根本不了解我们;作品有
A、33.B、44.C、433D、443B原文提及“英国广播公司每天有44次现场直播的天气预报。”故B正确。
最新回复
(
0
)